Contact during the exam:
Magnus Landstad
Hans Jakob Rivertz
Andrew Stacey
English version

TMA4115 Matematikk 3

Tid:
Examination Aids: D
No written and handwritten examination support materials are permitted.
Calculator: Citizen SR-270X or Hewlett Packard HP30S

Problem 1.

1. Show that $|\operatorname{Re} z| \leq|z|$.
2. Solve the equation $z^{2}-2 \mathrm{i} z-1-2 \mathrm{i}=0$. Write your answer in the form $x+\mathrm{i} y$.

Problem 2.

1. Solve the initial-value problem

$$
y^{\prime \prime}-4 y^{\prime}+3 y=0, \quad y(0)=1, y^{\prime}(0)=2
$$

2. Find a general solution of the differential equation

$$
y^{\prime \prime}-4 y^{\prime}+3 y=3-4 e^{x}
$$

Problem 3.

$y=x$ is a solution of $y^{\prime \prime}-\left(3 x^{2}+4 x^{-1}\right) y^{\prime}+\left(3 x+4 x^{-2}\right) y=0$, find another solution (such that the two are linealry independent).

Problem 4.

An underdamped spring (with mass 1) has equation of motion:

$$
y^{\prime \prime}+c y^{\prime}+k y=0
$$

Two solutions of this differential equation are

$$
y_{1}=e^{\lambda t} \cos (\omega t), \quad y_{2}=e^{\lambda t} \sin (\omega t)
$$

1. Compute the Wronskian $W\left(y_{1}, y_{2}\right)$ and find a formula which uses c and k instead of λ and ω.
2. Asume that the time between successive maxima is $2 s$, and that the maxsimum amplitude is reduced to $1 / 4$ of its first value after 15 oscillations. Find the damping constant of the system.

Problem 5.

Multiple-choice question, answer without showing your reasoning with one alternative for each question.
Let A be a 4×3-matrix. What is $\operatorname{Rank} A$? (Which alternative is always right?)
A: at most 3
B: 3
C: at least 3
D: 4

Which alternative is the least-squares solution (\bar{x}, \bar{y}) of the linear system

$$
-x+y=5,-x+2 y=0,-3 x+y=-5 ?
$$

A: $(2,3 / 2)$
B: $(1,1)$
C: $(3 / 2,3 / 2)$
D: $(2,2)$

Problem 6.

Let A be the following matrix; find a basis for each of the spaces $\operatorname{Null}(A)$, $\operatorname{Col}(A), \operatorname{Col}(A)^{\perp}$, and $\operatorname{Row}(A)$.

$$
A=\left[\begin{array}{cccccc}
1 & 2 & 0 & 1 & 2 & 1 \\
3 & 6 & 1 & 0 & 2 & -1 \\
4 & 8 & 2 & -2 & 0 & -4
\end{array}\right]
$$

Find the orthogonal projection of $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ on to $\operatorname{Col}(A)$.

Problem 7.

Let

$$
A=\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 2 & 0 \\
1 & 0 & 2
\end{array}\right]
$$

1. Find the eigenvalues and eigenvectors of A.
2. Find a matrix P and a diagonal matrix D such that $A=P D P^{T}$.
3. Solve the system of differential equations

$$
\begin{aligned}
& y_{1}^{\prime}=3 y_{1}^{\prime}+y_{2}^{\prime}+y_{3}^{\prime} \\
& y_{2}^{\prime}=y_{1}^{\prime}+2 y_{2}^{\prime} \\
& y^{\prime}=y^{\prime}+
\end{aligned}
$$

$$
\text { with initial position } y_{1}(0)=3, y_{2}(0)=2, y_{3}(0)=-2 \text {. }
$$

Problem 8.

1. Let

$$
A=\left[\begin{array}{ll}
0 & k \\
0 & 0
\end{array}\right]
$$

Show that $A^{2}=0$ and that $I+A$ is invertible.
2. Let B be an $n \times n$-matrix such that $B^{2}=0$. Show that $I+B$ is invertible. Is B diagonalisable?

