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Problem 1 Find all solutions of Im 𝑧 = √2
2 |𝑧| and draw them on the complex

plane.

Solution:

We can solve this using either polar form or cartesian form.

If using polar form, we write 𝑧 = 𝑟𝑒𝑖𝜃 and recall that Im 𝑧 = 𝑟 sin 𝜃 and
|𝑧| = 𝑟. Thus the equation is 𝑟 sin 𝜃 = √2

2 𝑟. We get a solution if 𝑟 = 0, and
if 𝑟 ≠ 0 then we can cancel it to leave sin𝜃 = √2

2 . The solutions of this are
𝜃 = 𝜋/4 and 𝜃 = 3𝜋/4. In polar form, then, the solutions are 𝑧 = 𝑟𝑒𝑖𝜃 with
either 𝑟 = 0 or 𝜃 = 𝜋/4 or 𝜃 = 3𝜋/4. Converting these into standard (or
cartesian) form, we have 𝑧 = 𝑟 √2

2 (1 + 𝑖) and 𝑧 = 𝑟 √2
2 (−1 + 𝑖) for 𝑟 ≥ 0.

Equivalently, 𝑧 = 𝑥 + 𝑖 |𝑥| for 𝑥 ∈ ℝ.

In cartesian form, we write 𝑧 = 𝑥 + 𝑖𝑦 and substitute in. This yields 𝑦 =
√2
2 √𝑥2 + 𝑦2. We can square both sides to get 𝑦2 = 1

2(𝑥2 + 𝑦2) which rear-
ranges to 𝑦2 = 𝑥2. The solutions of this are 𝑦 = ±𝑥 with 𝑥 ∈ ℝ. How-
ever, when we squared both sides we lost some information. The equation
𝑦 = √2

2 √𝑥2 + 𝑦2 forces 𝑦 to be positive. Thus the solutions to the original
are 𝑦 = |𝑥| with 𝑥 ∈ ℝ. Hence 𝑧 = 𝑥 + 𝑖 |𝑥| for 𝑥 ∈ ℝ.

We can draw these on the complex plane as follows.

Problem 2 Find a particular solution of the differential equation:
𝑦″(𝑡) + 3𝑦′(𝑡) + 2𝑦(𝑡) = 2𝑒−𝑡.

Solution:
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The right-hand side is a simple exponential so we try the method of unde-
termined coefficients. Substituting in 𝑦(𝑡) = 𝑒−𝑡, we see that:

𝑦″(𝑡) + 3𝑦′(𝑡) + 2𝑦(𝑡) = 𝑒−𝑡 − 3𝑒−𝑡 + 2𝑒−𝑡

= (1 − 3 + 2)𝑒−𝑡

= 0.

That is, 𝑒−𝑡 is a solution of the homogeneous equation.

The rule for this, then, is to try multiplying by 𝑡; that is, to try 𝑦(𝑡) = 𝑡𝑒−𝑡.
Then 𝑦′(𝑡) = −𝑡𝑒−𝑡 + 𝑒−𝑡 and 𝑦″(𝑡) = 𝑡𝑒−𝑡 − 2𝑒−𝑡. Substituting in we obtain:

𝑦″(𝑡) + 3𝑦′(𝑡) + 2𝑦(𝑡) = 𝑡𝑒−𝑡 − 2𝑒−𝑡 − 3𝑡𝑒−𝑡 + 3𝑒−𝑡 + 2𝑡𝑒−𝑡

= (1 − 3 + 2)𝑡𝑒−𝑡 + (−2 + 3)𝑒−𝑡

= 𝑒−𝑡.

Thus to get 2𝑒−𝑡 we need to start with 2𝑡𝑒−𝑡. Hence a particular solution is
2𝑡𝑒−𝑡.

Problem 3 Given that 𝑦1(𝑥) = 𝑥−1 and 𝑦2(𝑥) = 𝑥−2 are two linearly indepen-
dent solutions of the differential equation

𝑦″(𝑥) + 4𝑥−1𝑦′(𝑥) + 2𝑥−2𝑦(𝑥) = 0, 𝑥 > 0,

find the general solution of the differential equation:

𝑦″(𝑥) + 4𝑥−1𝑦′(𝑥) + 2𝑥−2𝑦(𝑥) = 𝑥−3, 𝑥 > 0.

Solution:

As we are given two linearly independent solutions of the homogeneous
equation, this looks suitable for variation of parameters. Thus we look for
a solution of the form 𝑦(𝑥) = 𝑢1(𝑥)𝑦1(𝑥) + 𝑢2(𝑥)𝑦2(𝑥). The functions 𝑢1
and 𝑢2 are assumed to satisfy:

𝑢′
1𝑦1 + 𝑢′

2𝑦2 = 0,
𝑢′

1𝑦′
1 + 𝑢′

2𝑦′
2 = 𝑟.
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The ODE is already in standard form so 𝑟(𝑥) = 𝑥−3. Substituting in, we
obtain:

𝑢′
1𝑥−1 + 𝑢′

2𝑥−2 = 0,
𝑢′

1(−𝑥−2) + 𝑢′
2(−2𝑥−3) = 𝑥−3.

The first equation simplifies to 𝑢′
2 = −𝑥𝑢′

1. The second equation simplifies
to 𝑥𝑢′

1 + 2𝑢′
2 = −1. Thus 𝑢′

2 = −1 and 𝑢′
1 = 𝑥−1. Hence 𝑢2(𝑥) = −𝑥 and

𝑢1(𝑥) = log(𝑥).

The particular solution is therefore:

𝑦(𝑥) = 𝑥−1 log(𝑥) − 𝑥 ⋅ 𝑥−2 = 𝑥−1 log(𝑥) − 𝑥−1

and the general solution is:

𝑦(𝑥) = 𝑥−1 log(𝑥) + 𝐴𝑥−1 + 𝐵𝑥−2

(noting that as 𝑥−1 is a solution of the homogeneous, we can omit that part
from the particular solution).

Problem 4 Let

𝐴 =
⎡⎢⎢⎢
⎣

1 3 −2 0 3
−2 −6 5 1 −8

2 6 2 6 −2
−1 −3 0 −2 2

⎤⎥⎥⎥
⎦

Find bases for Null(𝐴), Col(𝐴), and Row(𝐴). What is dim(Null(𝐴𝑇))?

Solution:
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We begin by row reducing the matrix:

⎡⎢⎢⎢
⎣

1 3 −2 0 3
−2 −6 5 1 −8

2 6 2 6 −2
−1 −3 0 −2 2

⎤⎥⎥⎥
⎦

𝜌2+2𝜌1⟶
𝜌3−2𝜌1𝜌4+𝜌1

⎡⎢⎢⎢
⎣

1 3 −2 0 3
0 0 1 1 −2
0 0 6 6 −8
0 0 −2 −2 5

⎤⎥⎥⎥
⎦

𝜌3+2𝜌2⟶
𝜌4+2𝜌2

⎡⎢⎢⎢
⎣

1 3 −2 0 3
0 0 1 1 −2
0 0 0 0 4
0 0 0 0 1

⎤⎥⎥⎥
⎦

𝜌4−4𝜌3⟶
⎡⎢⎢⎢
⎣

1 3 −2 0 3
0 0 1 1 −2
0 0 0 0 4
0 0 0 0 0

⎤⎥⎥⎥
⎦

There are pivots in columns 1, 3, and 5 so a basis for the column space is:

⎧{{
⎨{{⎩

⎡⎢⎢⎢
⎣

1
−2

2
1

⎤⎥⎥⎥
⎦

,
⎡⎢⎢⎢
⎣

−2
5
2
0

⎤⎥⎥⎥
⎦

,
⎡⎢⎢⎢
⎣

3
−8
−2

2

⎤⎥⎥⎥
⎦

⎫}}
⎬}}⎭

The free variables in columns 2 and 4 give us a basis for the null space as:

⎧{{{
⎨{{{⎩

⎡⎢⎢⎢⎢⎢
⎣

−3
1
0
0
0

⎤⎥⎥⎥⎥⎥
⎦

,
⎡⎢⎢⎢⎢⎢
⎣

−2
0

−1
1
0

⎤⎥⎥⎥⎥⎥
⎦

⎫}}}
⎬}}}⎭

The row space has basis the non-zero rows in the row reduced form, thus:

⎧{{{
⎨{{{⎩

⎡⎢⎢⎢⎢⎢
⎣

1
3

−2
0
3

⎤⎥⎥⎥⎥⎥
⎦

,
⎡⎢⎢⎢⎢⎢
⎣

0
0
1
1

−2

⎤⎥⎥⎥⎥⎥
⎦

,
⎡⎢⎢⎢⎢⎢
⎣

0
0
0
0
4

⎤⎥⎥⎥⎥⎥
⎦

⎫}}}
⎬}}}⎭

Lastly, the row space of 𝐴 is the column space of 𝐴𝑇, then we have:

dim Null(𝐴𝑇) + dim Col(𝐴𝑇) = 4
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whence dim Null(𝐴𝑇) = 1.

Problem 5 For which values of 𝑎 is the following family of vectors linearly
independent? For each 𝑎 where the family is linearly dependent, give a non-
trivial linear dependency between the vectors.

⎧{
⎨{⎩

⎡⎢⎢
⎣

𝑎
−2

1
⎤⎥⎥
⎦

, ⎡⎢⎢
⎣

2
𝑎
3
⎤⎥⎥
⎦

, ⎡⎢⎢
⎣

𝑎
−1

0
⎤⎥⎥
⎦

⎫}
⎬}⎭

Solution:

There are a variety of ways to solve this. Since the question asks for re-
lations in the cases where the vectors are not linearly independent, let us
start from an arbitrary relation:

𝑐1
⎡⎢⎢
⎣

𝑎
−2

1
⎤⎥⎥
⎦

+ 𝑐2
⎡⎢⎢
⎣

2
𝑎
3
⎤⎥⎥
⎦

+ 𝑐3
⎡⎢⎢
⎣

𝑎
−1

0
⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

0
0
0
⎤⎥⎥
⎦

The third row tells us that 𝑐1 + 3𝑐2 = 0 and thus we can simplify this to:

𝑐2
⎛⎜⎜⎜
⎝

−3 ⎡⎢⎢
⎣

𝑎
−2

1
⎤⎥⎥
⎦

+ ⎡⎢⎢
⎣

2
𝑎
3
⎤⎥⎥
⎦

⎞⎟⎟⎟
⎠

+ 𝑐3
⎡⎢⎢
⎣

𝑎
−1

0
⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

0
0
0
⎤⎥⎥
⎦

Equivalently,

𝑐2
⎡⎢⎢
⎣

−3𝑎 + 2
6 + 𝑎

0
⎤⎥⎥
⎦

+ 𝑐3
⎡⎢⎢
⎣

𝑎
−1

0
⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

0
0
0
⎤⎥⎥
⎦

The second row now tells us that 𝑐3 = (6 + 𝑎)𝑐2 and thus the top row
becomes:

𝑐2((−3𝑎 + 2) + (6 + 𝑎)𝑎) = 0
This simplifies to:

𝑐2(𝑎2 + 3𝑎 + 2) = 0

So if 𝑎 = −1 or 𝑎 = −2 then there is a dependency, and if not then the
vectors are linearly independent.
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If 𝑎 = −1, we pick 𝑐2 = 1 and then 𝑐3 = 5 and 𝑐1 = −3. That is,

𝑎 = −1, −3 ⎡⎢⎢
⎣

𝑎
−2

1
⎤⎥⎥
⎦

+ ⎡⎢⎢
⎣

2
𝑎
3
⎤⎥⎥
⎦

+ 5 ⎡⎢⎢
⎣

𝑎
−1

0
⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

0
0
0
⎤⎥⎥
⎦

.

If 𝑎 = −2 then putting 𝑐2 = 1 we get 𝑐1 = −3 as before and 𝑐3 = 4. That is,

𝑎 = −2, −3 ⎡⎢⎢
⎣

𝑎
−2

1
⎤⎥⎥
⎦

+ ⎡⎢⎢
⎣

2
𝑎
3
⎤⎥⎥
⎦

+ 4 ⎡⎢⎢
⎣

𝑎
−1

0
⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

0
0
0
⎤⎥⎥
⎦

.

Problem 6 Let

𝐴 = ⎡⎢⎢
⎣

3 7 5
4 1 −10
0 1 2

⎤⎥⎥
⎦

Find an orthogonal basis for ℝ3 that begins with an orthogonal basis for Col(𝐴).

Solution:

There are a couple of ways to do this. One is to append the standard basis
to the columns of the matrix and then apply Gram–Schmidt. Another is to
apply Gram–Schmidt to the columns of the matrix and then compute an
orthogonal basis for Col(𝐴)⟂ = Null(𝐴𝑇).

Either way, we begin by applying Gram–Schmidt to the columns of the
above matrix. We start with:

⃗𝑢1 = ⎡⎢⎢
⎣

3
4
0
⎤⎥⎥
⎦

and set

⃗𝑢2 = ⎡⎢⎢
⎣

7
1
1
⎤⎥⎥
⎦

−

⎡⎢⎢
⎣

7
1
1
⎤⎥⎥
⎦

• ⎡⎢⎢
⎣

3
4
0
⎤⎥⎥
⎦

⎡⎢⎢
⎣

3
4
0
⎤⎥⎥
⎦

• ⎡⎢⎢
⎣

3
4
0
⎤⎥⎥
⎦

⎡⎢⎢
⎣

3
4
0
⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

7
1
1
⎤⎥⎥
⎦

− 25
25

⎡⎢⎢
⎣

3
4
0
⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

4
−3

1
⎤⎥⎥
⎦
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Then when we work with the third vector, we find:

⎡⎢⎢
⎣

5
−10

2
⎤⎥⎥
⎦

−

⎡⎢⎢
⎣

5
−10

2
⎤⎥⎥
⎦

• ⎡⎢⎢
⎣

4
−3

1
⎤⎥⎥
⎦

⎡⎢⎢
⎣

4
−3

1
⎤⎥⎥
⎦

• ⎡⎢⎢
⎣

4
−3

1
⎤⎥⎥
⎦

⎡⎢⎢
⎣

4
−3

1
⎤⎥⎥
⎦

−

⎡⎢⎢
⎣

5
−10

2
⎤⎥⎥
⎦

• ⎡⎢⎢
⎣

3
4
0
⎤⎥⎥
⎦

⎡⎢⎢
⎣

3
4
0
⎤⎥⎥
⎦

• ⎡⎢⎢
⎣

3
4
0
⎤⎥⎥
⎦

⎡⎢⎢
⎣

3
4
0
⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

5
−10

2
⎤⎥⎥
⎦

− 52
26

⎡⎢⎢
⎣

4
−3

1
⎤⎥⎥
⎦

− −25
25

⎡⎢⎢
⎣

3
4
0
⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

0
0
0
⎤⎥⎥
⎦

So an orthogonal basis for Col(𝐴) is:

⎧{
⎨{⎩

⎡⎢⎢
⎣

3
4
0
⎤⎥⎥
⎦

, ⎡⎢⎢
⎣

4
−3

1
⎤⎥⎥
⎦

⎫}
⎬}⎭

We only need one more vector for a basis for ℝ3, so the simplest method is
to solve:

[3 4 0
4 −3 1] ⃗𝑥 = ⃗0

Row reduction leads to:

[3 4 0
4 −3 1] 3𝜌2⟶ [ 3 4 0

12 −9 3] 𝜌2−4𝜌1⟶ [3 4 0
0 −25 3]

which has solution
⎡⎢⎢
⎣

−4
3

25
⎤⎥⎥
⎦

Thus the sought-after basis is:

⎧{
⎨{⎩

⎡⎢⎢
⎣

3
4
0
⎤⎥⎥
⎦

, ⎡⎢⎢
⎣

4
−3

1
⎤⎥⎥
⎦

, ⎡⎢⎢
⎣

−4
3

25
⎤⎥⎥
⎦

⎫}
⎬}⎭
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Problem 7 The newly opened student cafeteria at the Antarctic University of
Tropical Medicine offers a choice of three meals: a meat dish, a vegetarian dish,
and a sandwich meal. Extensive research reveals that students select their meal
based solely on what they ate the day before. There is a probability of 0.1 that a
student will eat the same as the previous day. If a student did not have the meat
dish yesterday, then the probability that they will choose the meat dish today
is 0.3. If a student did have the meat dish yesterday, then they will choose the
sandwich today with probability 0.3.

Set up the stochastic matrix for this situation and use it to find the proportions
that the caterers should buy the meals in the long term.

Solution:

To set up the stochastic matrix, we need to assign an order to the prefer-
ences. We will list them as “meat”, “vegetarian”, “sandwich”. The infor-
mation from the description allows us to fill in the following data:

⎡⎢⎢
⎣

0.1 0.3 0.3
0.1

0.3 0.1
⎤⎥⎥
⎦

As it is a stochastic matrix, the columns must sum to 1 and this allows us
to fill in the rest:

⎡⎢⎢
⎣

0.1 0.3 0.3
0.6 0.1 0.6
0.3 0.6 0.1

⎤⎥⎥
⎦

We are asked about the “long term” solution, which means that we need
to find the steady state solution. Letting 𝑃 be the matrix above, we look for

⃗𝑞 such that 𝑃 ⃗𝑞 = ⃗𝑞. That is, ⃗𝑞 is a probability vector in Null(𝑃 − 𝐼). To find
this, we row reduce 𝑃 − 𝐼:

⎡⎢⎢
⎣

−0.9 0.3 0.3
0.6 −0.9 0.6
0.3 0.6 −0.9

⎤⎥⎥
⎦

𝜌1↔𝜌3⟶ ⎡⎢⎢
⎣

0.3 0.6 −0.9
0.6 −0.9 0.6

−0.9 0.3 0.3
⎤⎥⎥
⎦

𝜌2−2𝜌1⟶
𝜌3+3𝜌1

⎡⎢⎢
⎣

0.3 0.6 −0.9
0 −2.1 2.4
0 2.1 −2.4

⎤⎥⎥
⎦

𝜌3+𝜌2⟶ ⎡⎢⎢
⎣

0.3 0.6 −.9
0 −2.1 2.4
0 0 0

⎤⎥⎥
⎦



TMA4115 Matematikk 3, 20th May 2014 Page 9 of 11

This has solution:
⎡⎢⎢
⎣

5
7
8
7
1
⎤⎥⎥
⎦

Renormalising, we obtain

7
20

⎡⎢⎢
⎣

5
7
8
7
1
⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

1
4
2
5

7
20

⎤⎥⎥
⎦

Thus the caterers should buy the meals in the following proportions:

• 1
4 = .25 meat,

• 2
5 = .4 vegetarian,

• 7
20 = .35 sandwich.

Problem 8 Find the eigenvalues and eigenvectors (which might be complex)
of the matrix

⎡⎢⎢
⎣

0 0 −1
1 −2 2
1 0 0

⎤⎥⎥
⎦

Find the solution of the following system of differential equations with initial
conditions 𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 1:

𝑥′
1 = −𝑥3

𝑥′
2 = 𝑥1 − 2𝑥2 + 2𝑥3

𝑥′
3 = 𝑥1

Write your answer in terms of real functions.

Solution:
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There is an obvious eigenvalue and eigenvector: −2 with ⎡⎢⎢
⎣

0
1
0
⎤⎥⎥
⎦
. To find the

others, we compute the characteristic polynomial:

∣∣∣∣∣

−𝜆 0 −1
1 −2 − 𝜆 2
1 0 −𝜆

∣∣∣∣∣
= (−2 − 𝜆) ∣−𝜆 −1

1 −𝜆∣ = (−2 − 𝜆)(𝜆2 + 1)

Thus the other two eigenvalues are ±𝑖.

To find the (complex) eigenvectors, we row reduce as follows:

⎡⎢⎢
⎣

−𝑖 0 −1
1 −2 − 𝑖 2
1 0 −𝑖

⎤⎥⎥
⎦

𝜌2−𝑖𝜌1⟶
𝜌3−𝑖𝜌1

⎡⎢⎢
⎣

−𝑖 0 −1
0 −2 − 𝑖 2 + 𝑖
0 0 0

⎤⎥⎥
⎦

𝑖𝜌1⟶
𝜌2/(−2−𝑖)

[1 0 −𝑖0 1 −10 0 0]

which has solution:
⎡⎢⎢
⎣

𝑖
1
1
⎤⎥⎥
⎦

The other eigenvector (for eigenvalue −𝑖) will therefore be:

⎡⎢⎢
⎣

−𝑖
1
1
⎤⎥⎥
⎦

The system of differential equations is of the form ⃗𝑥′ = 𝐴 ⃗𝑥. Its general
solution is therefore of the form:

⃗𝑥(𝑡) = 𝑐1𝑒𝑖𝑡 ⎡⎢⎢
⎣

𝑖
1
1
⎤⎥⎥
⎦

+ 𝑐2𝑒−𝑖𝑡 ⎡⎢⎢
⎣

−𝑖
1
1
⎤⎥⎥
⎦

+ 𝑐3𝑒−2𝑡 ⎡⎢⎢
⎣

0
1
0
⎤⎥⎥
⎦

To find 𝑐1, 𝑐2, and 𝑐3 we look at the initial conditions. There, we have:

𝑐1
⎡⎢⎢
⎣

𝑖
1
1
⎤⎥⎥
⎦

+ 𝑐2
⎡⎢⎢
⎣

−𝑖
1
1
⎤⎥⎥
⎦

+ 𝑐3
⎡⎢⎢
⎣

0
1
0
⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

0
0
1
⎤⎥⎥
⎦
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Thus 𝑐1 + 𝑐2 = 1 and 𝑐1 − 𝑐2 = 0, whence 𝑐1 = 𝑐2 = 1/2. Lastly, 𝑐3 =
−(𝑐1 + 𝑐2) = −1. Hence the solution is:

⃗𝑥(𝑡) = 1
2𝑒𝑖𝑡 ⎡⎢⎢

⎣

𝑖
1
1
⎤⎥⎥
⎦

+ 1
2𝑒−𝑖𝑡 ⎡⎢⎢

⎣

−𝑖
1
1
⎤⎥⎥
⎦

− 𝑒−2𝑡 ⎡⎢⎢
⎣

0
1
0
⎤⎥⎥
⎦

To write this in terms of real functions, we can gather terms as follows.

⃗𝑥(𝑡) = 1
2

⎡⎢⎢
⎣

𝑖𝑒𝑖𝑡 − 𝑖𝑒−𝑖𝑡

𝑒𝑖𝑡 + 𝑒−𝑖𝑡

𝑒𝑖𝑡 + 𝑒−𝑖𝑡

⎤⎥⎥
⎦

− 𝑒−2𝑡 ⎡⎢⎢
⎣

0
1
0
⎤⎥⎥
⎦

= 1
2

⎡⎢⎢
⎣

−2 sin(𝑡)
2 cos(𝑡)
2 cos(𝑡)

⎤⎥⎥
⎦

− 𝑒−2𝑡 ⎡⎢⎢
⎣

0
1
0
⎤⎥⎥
⎦

Hence:

⃗𝑥(𝑡) = ⎡⎢⎢
⎣

− sin(𝑡)
cos(𝑡) − 𝑒−2𝑡

cos(𝑡)
⎤⎥⎥
⎦

Problem 9 A scientist records the following data for her experiment:

Control (𝑥) -2 -1 0 1 2
Reading (𝑦) 5 4 2 4 15

The model for this data is a quadratic 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐. Find the least-squares
solution for 𝑎, 𝑏, 𝑐 that best fits the data.

Solution:

The model is 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 so we obtain a system of linear equations
when we try to fit this data. As a matrix equation, this is:

⎡⎢⎢⎢⎢⎢
⎣

4 −2 1
1 −1 1
0 0 1
1 1 1
4 2 1

⎤⎥⎥⎥⎥⎥
⎦

⎡⎢⎢
⎣

𝑎
𝑏
𝑐
⎤⎥⎥
⎦

=
⎡⎢⎢⎢⎢⎢
⎣

5
4
2
4

15

⎤⎥⎥⎥⎥⎥
⎦
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This does not have a solution, so we look for a least-squares solution by
solving 𝐴𝑇𝐴 ⃗𝑎 = 𝐴𝑇 ⃗𝑦. First, we compute:

𝐴𝑇𝐴 = ⎡⎢⎢
⎣

4 1 0 1 4
−2 −1 0 1 2

1 1 1 1 1
⎤⎥⎥
⎦

⎡⎢⎢⎢⎢⎢
⎣

4 −2 1
1 −1 1
0 0 1
1 1 1
4 2 1

⎤⎥⎥⎥⎥⎥
⎦

= ⎡⎢⎢
⎣

34 0 10
0 10 0

10 0 5
⎤⎥⎥
⎦

and

𝐴𝑇 ⃗𝑦 = ⎡⎢⎢
⎣

4 1 0 1 4
−2 −1 0 1 2

1 1 1 1 1
⎤⎥⎥
⎦

⎡⎢⎢⎢⎢⎢
⎣

5
4
2
4

15

⎤⎥⎥⎥⎥⎥
⎦

= ⎡⎢⎢
⎣

88
20
30

⎤⎥⎥
⎦

We row reduce the augmented matrix:

⎡⎢⎢
⎣

34 0 10 88
0 10 0 20

10 0 5 30
⎤⎥⎥
⎦

𝜌1↔𝜌3⟶ ⎡⎢⎢
⎣

10 0 5 30
0 10 0 20

34 0 10 88
⎤⎥⎥
⎦

𝜌1/5⟶
𝜌2/10

⎡⎢⎢
⎣

2 0 1 6
0 1 0 2

34 0 10 88
⎤⎥⎥
⎦

𝜌3−17𝜌1⟶ ⎡⎢⎢
⎣

2 0 1 6
0 1 0 2
0 0 −7 −14

⎤⎥⎥
⎦

which produces the solution:

⎡⎢⎢
⎣

2
2
2
⎤⎥⎥
⎦

Hence the best fit quadratic is 2𝑥2 + 2𝑥 + 2.

Problem 10 Let 𝐴 be an 𝑚 × 𝑛–matrix. Explain why 𝐴𝑇𝐴 is a symmetric
matrix. What size is it?

Use the spectral theorem to show that there is an orthogonal basis { ⃗𝑣𝑗} for ℝ𝑛

such that {𝐴 ⃗𝑣𝑗} is an orthogonal family (i.e. the vectors are pairwise orthogonal).

Solution:

To show that 𝐴𝑇𝐴 is symmetric, we take its transpose: (𝐴𝑇𝐴)𝑇. The trans-
pose of a product is the product of the transposes, with the order reversed:
(𝐵𝐶)𝑇 = 𝐶𝑇𝐵𝑇. Thus (𝐴𝑇𝐴)𝑇 = 𝐴𝑇(𝐴𝑇)𝑇. Taking the transpose twice gets
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us back to where we started: (𝐵𝑇)𝑇 = 𝐵. Thus (𝐴𝑇𝐴)𝑇 = 𝐴𝑇𝐴. Hence 𝐴𝑇𝐴
is symmetric.

Since 𝐴 is 𝑚 × 𝑛, 𝐴𝑇 is 𝑛 × 𝑚. Hence 𝐴𝑇𝐴 is 𝑛 × 𝑛.

The spectral theorem says that there is an orthogonal basis for ℝ𝑛 consist-
ing of eigenvectors of 𝐴𝑇𝐴. Let { ⃗𝑣1, … , ⃗𝑣𝑛} be such a basis. Let ⃗𝑢𝑗 = 𝐴 ⃗𝑣𝑗.
Then for 𝑖 ≠ 𝑗,

⃗𝑢𝑖 • ⃗𝑢𝑗 = (𝐴 ⃗𝑣𝑖) • (𝐴 ⃗𝑣𝑗) = (𝐴 ⃗𝑣𝑖)𝑇(𝐴 ⃗𝑣𝑗) = ⃗𝑣𝑇
𝑖 𝐴𝑇𝐴 ⃗𝑣𝑗

Now ⃗𝑣𝑗 is an eigenvector of 𝐴𝑇𝐴, say with eigenvalue 𝜆𝑗. So:

⃗𝑣𝑇
𝑖 𝐴𝑇𝐴 ⃗𝑣𝑗 = ⃗𝑣𝑇

𝑖 (𝜆𝑗 ⃗𝑣𝑗) = 𝜆𝑗 ⃗𝑣𝑇
𝑖 ⃗𝑣𝑗 = 𝜆𝑗 ⃗𝑣𝑖 • ⃗𝑣𝑗.

As 𝑖 ≠ 𝑗, ⃗𝑣𝑖 • ⃗𝑣𝑗 = 0. Hence ⃗𝑢𝑖 • ⃗𝑢𝑗 = 0 and thus { ⃗𝑢1, … , ⃗𝑢𝑛} is an orthogonal
family.


