NTNU - Trondheim Norwegian University of Science and Technology

Examination paper for TMA4110/TMA4115 Matematikk 3

Academic contact during examination: Gereon Quick
Phone: 48501412

Examination date: August 2016
Examination time (from-to):
Permitted examination support material: C: Simple Calculator (Casio fx-82ES PLUS, Citizen SR270X, Citizen SR-270X College, or Hewlett Packard HP30S), Rottmann: Matematisk formelsamling.

Other information:
Give reasons for all answers, ensuring that it is clear how the answers have been reached. Each of the 8 problems has the same weight.

Language: English
Number of pages: 3
Number pages enclosed: 0

Checked by:

Problem 1

a) Compute $\left(\frac{1}{-1+i \sqrt{3}}\right)^{6}$.
b) Use the polar form $z=r \cdot e^{i \theta}$ to find all complex numbers z satisfying

$$
2 z^{2}-\bar{z}^{3}=0
$$

Draw the solutions in the complex plane.

Problem 2

Find the unique function $y(t)$ that solves the initial value problem

$$
\frac{1}{4} y^{\prime \prime}-y^{\prime}+y=5 e^{2 t}+1, y(0)=1, y^{\prime}(0)=1
$$

Problem 3

Consider the following system of differential equations

$$
\mathbf{x}^{\prime}=A \mathbf{x} \text { with } A=\left(\begin{array}{rr}
1 & -1 \tag{1}\\
2 & 4
\end{array}\right)
$$

a) Diagonalize the matrix A : find an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix.
b) We set the change of variable $\mathbf{y}=P^{-1} \mathbf{x}$. Which differential equation is satisfied by \mathbf{y} ?
c) Find the unique solution of the system (1) which satisfies $\mathbf{x}(0)=\binom{1}{2}$.

Problem 4 Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}$ be the linear transformation given by

$$
T\left(\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]\right)=x-y+2 z-2 w
$$

Find an orthogonal basis for the null space of T.

Problem 5

Let $A=\left[\begin{array}{ccc}a & a-1 & a \\ a-1 & 1 & 0 \\ a & 0 & a\end{array}\right]$
a) Determine the rank of A for every real number a.
b) Determine all real numbers a and b such that the linear system

$$
A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
b \\
0 \\
1
\end{array}\right]
$$

has infinitely many solutions.

Problem 6

Chess player Magnus can either win, draw or lose a game. His coach observes the following pattern in Magnus' games:

- After a win, there is a 70% chance that he wins the next game as well and only a 10% chance that he loses the next game.
- After a draw, there is an 80% chance that the next game is a draw as well, but only a 10% chance that he wins the next game.
- After losing a game, there is a 30% chance that he wins the next game and a 30% chance for a draw in the next game.

After many games of this pattern, what is the most likely outcome of Magnus' next game? (Give the probabilities for the three possible outcomes.)

Problem 7

Find the equation $y=a x^{2}+b x+c$ which best fits the data points $(-2,6),(-1,6),(0,-2),(1,2)$ and $(2,3)$.

Problem 8

Suppose that A is an $n \times n$ matrix for which A^{2} is the zero matrix, i.e. the $n \times n$ matrix with zeroes in every position.
a) Prove that A is not invertible.
b) Show that the only eigenvalue of A is 0 .
c) Give a particular example of such an A that is not the zero matrix. (Hint: consider the 2×2-case)

