NTNU - Trondheim Norwegian University of Science and Technology

Examination paper for TMA4115 Matematikk 3

Academic contact during examination: Antoine Julien ${ }^{\text {a }}$, Alexander Schmeding ${ }^{\text {b }}$, Gereon Quick ${ }^{\text {c }}$
Phone: ${ }^{a} 73597782$, b 40539912 , ${ }^{\text {c }} 48501412$

Examination date: 31 May 2016
Examination time (from-to): 09:00-13:00
Permitted examination support material: C: Simple Calculator (Casio fx-82ES PLUS, Citizen SR270X, Citizen SR-270X College, or Hewlett Packard HP30S), Rottmann: Matematiske formelsamling.

Other information:
Give reasons for all answers, ensuring that it is clear how the answers have been reached. Each of the 10 problems has the same weight.

Language: English
Number of pages: 4
Number pages enclosed: 0

Problem 1

a) For $z=(-1+i \sqrt{3})$, compute z^{3} and $|z|^{6}$.
b) Find all complex numbers z with $z^{3}=8 i$ and draw them in the complex plane.

Problem 2

Consider the inhomogeneous differential equation

$$
\begin{equation*}
y^{\prime \prime}+6 y^{\prime}+9 y=\cos t \tag{1}
\end{equation*}
$$

a) Find the general solution of the associated homogeneous equation.
b) Find a particular solution of (1).
c) Find the unique solution of (1) that satisfies $y(0)=y^{\prime}(0)=0$.

Problem $3 \quad$ Let a be a real number and A be the matrix $\left[\begin{array}{rr}0 & a \\ -a & 0\end{array}\right]$.
a) Find a fundamental set of real solutions to the differential equation $\mathbf{x}^{\prime}=\mathbf{A x}$.
b) Solve the initial value problem $\mathbf{x}^{\prime}=A \mathbf{x}$, where $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.

Problem 4

Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], \mathbf{v}=\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{r}3 \\ 6 \\ -1\end{array}\right]$ be vectors in \mathbb{R}^{3}.
a) Write the vector $\mathbf{p}=\left[\begin{array}{r}2 \\ 4 \\ -10\end{array}\right]$ as a linear combination of \mathbf{u}, \mathbf{v} and \mathbf{w}.
b) Can you write the vector $\mathbf{q}=\left[\begin{array}{l}2 \\ 5 \\ 6\end{array}\right]$ as a linear combination of \mathbf{u}, \mathbf{v} and \mathbf{w} ?
c) Are $\mathbf{u}, \mathbf{v}, \mathbf{w}$ linearly independent?
d) What is the determinant of the matrix $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 6 & -1\end{array}\right]$?

Problem 5

a) Find the inverse of the matrix $A=\left[\begin{array}{lll}2 & 2 & 0 \\ 0 & 0 & 1 \\ 4 & 2 & 0\end{array}\right]$.
b) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}+2 x_{2} \\
x_{3} \\
4 x_{1}+2 x_{2}
\end{array}\right] .
$$

Is T one-to-one?

Problem 6

Let A be the matrix

$$
A=\left[\begin{array}{rrrrr}
1 & 2 & 0 & 3 & 1 \\
2 & 4 & -1 & 5 & 4 \\
3 & 6 & -1 & 8 & 5 \\
5 & 4 & 8 & -1 & 1
\end{array}\right]
$$

a) Bring A into row echelon form.
b) Find a basis for $\operatorname{Col}(A)$ and determine the rank of A.
c) Determine the dimension of $\operatorname{Nul}(A)$.
d) Determine the dimensions of $\operatorname{Row}(A)$ and of $\operatorname{Nul}\left(A^{T}\right)$.

Problem 7

The temperature in Bymarka during winter season can be either above, equal to or below 0° Celsius. Trondheim's ski club observes the following fluctuation of temperatures from one day to the next:

- If the temperature has been above 0°, there is a 70% chance that it will be above and a 10% chance that it will be below 0° the next day.
- If the temperature has been equal to 0°, there is a 10% chance that it will be above and a 10% chance that it will be below 0° the next day.
- If the temperature has been below 0°, there is a 10% chance that it will be above and a 70% chance that it will be below 0° the next day.

After many days of this pattern in the winter, for what temperature should a skier prepare his/her skies? (Give the probabilities for the three possible temperatures.)

Problem 8

Find the equation $y=m x+c$ of the line that best fits the data points $(0,4),(1,-1),(2,1),(3,-3)$ and $(4,-1)$.

Problem 9

Let A be the matrix $\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right]$ and \mathbf{u} be the vector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
a) Verify that 2 is an eigenvalue of A and that \mathbf{u} is an eigenvector of A (possibly with an eigenvalue different from 2).
b) Find all the eigenvalues of A and a basis for each eigenspace of A.
c) Is A orthogonally diagonalizable? If so, orthogonally diagonalize A.

Problem 10

Let $W \subseteq \mathbb{R}^{n}$ be a subspace and W^{\perp} be its orthogonal complement.
a) Show that W^{\perp} is a subspace of \mathbb{R}^{n}.
b) Let \mathbf{w} be a vector which lies both in W and in W^{\perp} (i.e. $\mathbf{w} \in W \cap W^{\perp}$). Show that this implies $\mathbf{w}=\mathbf{0}$.
c) Let $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{r}\right\}$ be a basis of W and let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{s}\right\}$ be a basis of W^{\perp}. Show that $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{r}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{s}\right\}$ is a basis of \mathbb{R}^{n}.

