

Department of Mathematical Sciences

Examination paper for TMA4115 Matematikk 3

Academic contact during examination: Antoine Julien^a, Alexander Schmeding^b, Gereon Quick^c Phone: ^a73 59 77 82, ^b40 53 99 12, ^c48 50 14 12

Examination date: 31 May 2016

Examination time (from-to): 09:00-13:00

Permitted examination support material: C: Simple Calculator (Casio fx-82ES PLUS, Citizen SR-270X, Citizen SR-270X College, or Hewlett Packard HP30S), Rottmann: Matematiske formelsamling.

Other information:

Give reasons for all answers, ensuring that it is clear how the answers have been reached. Each of the 10 problems has the same weight.

Language: English Number of pages: 4 Number pages enclosed: 0

Checked by:

Date Signature

Problem 1

- **a)** For $z = (-1 + i\sqrt{3})$, compute z^3 and $|z|^6$.
- **b)** Find all complex numbers z with $z^3 = 8i$ and draw them in the complex plane.

Problem 2

Consider the inhomogeneous differential equation

$$y'' + 6y' + 9y = \cos t \tag{1}$$

- a) Find the general solution of the associated homogeneous equation.
- **b)** Find a particular solution of (1).
- c) Find the unique solution of (1) that satisfies y(0) = y'(0) = 0.

Problem 3 Let *a* be a real number and *A* be the matrix $\begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix}$.

- a) Find a fundamental set of real solutions to the differential equation $\mathbf{x}' = \mathbf{A}\mathbf{x}$.
- **b)** Solve the initial value problem $\mathbf{x}' = A\mathbf{x}$, where $\mathbf{x}(0) = \begin{bmatrix} 2\\1 \end{bmatrix}$.

Page 2 of 4

Problem 4

Let
$$\mathbf{u} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 2\\ 4\\ 6 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 3\\ 6\\ -1 \end{bmatrix}$ be vectors in \mathbb{R}^3 .
a) Write the vector $\mathbf{p} = \begin{bmatrix} 2\\ 4\\ -10 \end{bmatrix}$ as a linear combination of \mathbf{u} , \mathbf{v} and \mathbf{w} .
b) Can you write the vector $\mathbf{q} = \begin{bmatrix} 2\\ 5\\ 6 \end{bmatrix}$ as a linear combination of \mathbf{u} , \mathbf{v} and \mathbf{w} ?

- c) Are $\mathbf{u}, \mathbf{v}, \mathbf{w}$ linearly independent?
- **d)** What is the determinant of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 6 & -1 \end{bmatrix}$?

Problem 5

- **a)** Find the inverse of the matrix $A = \begin{bmatrix} 2 & 2 & 0 \\ 0 & 0 & 1 \\ 4 & 2 & 0 \end{bmatrix}$.
- b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} 2x_1 + 2x_2\\x_3\\4x_1 + 2x_2\end{bmatrix}.$$

Is T one-to-one?

Problem 6

Let A be the matrix

$$A = \begin{bmatrix} 1 & 2 & 0 & 3 & 1 \\ 2 & 4 & -1 & 5 & 4 \\ 3 & 6 & -1 & 8 & 5 \\ 5 & 4 & 8 & -1 & 1 \end{bmatrix}.$$

- a) Bring A into row echelon form.
- **b)** Find a basis for Col(A) and determine the rank of A.
- c) Determine the dimension of Nul(A).
- d) Determine the dimensions of $\operatorname{Row}(A)$ and of $\operatorname{Nul}(A^T)$.

Problem 7

The temperature in Bymarka during winter season can be either above, equal to or below 0° Celsius. Trondheim's ski club observes the following fluctuation of temperatures from one day to the next:

- If the temperature has been above 0°, there is a 70% chance that it will be above and a 10% chance that it will be below 0° the next day.
- If the temperature has been equal to 0°, there is a 10% chance that it will be above and a 10% chance that it will be below 0° the next day.
- If the temperature has been below 0°, there is a 10% chance that it will be above and a 70% chance that it will be below 0° the next day.

After many days of this pattern in the winter, for what temperature should a skier prepare his/her skies? (Give the probabilities for the three possible temperatures.)

Problem 8

Find the equation y = mx + c of the line that best fits the data points (0,4), (1,-1), (2,1), (3,-3) and (4,-1).

Page 4 of 4

Problem 9

Let A be the matrix $\begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$ and **u** be the vector $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

- a) Verify that 2 is an eigenvalue of A and that **u** is an eigenvector of A (possibly with an eigenvalue different from 2).
- **b**) Find all the eigenvalues of A and a basis for each eigenspace of A.
- c) Is A orthogonally diagonalizable? If so, orthogonally diagonalize A.

Problem 10

Let $W \subseteq \mathbb{R}^n$ be a subspace and W^{\perp} be its orthogonal complement.

- **a)** Show that W^{\perp} is a subspace of \mathbb{R}^n .
- **b)** Let **w** be a vector which lies both in W and in W^{\perp} (i.e. $\mathbf{w} \in W \cap W^{\perp}$). Show that this implies $\mathbf{w} = \mathbf{0}$.
- c) Let $\{\mathbf{w}_1, \ldots, \mathbf{w}_r\}$ be a basis of W and let $\{\mathbf{v}_1, \ldots, \mathbf{v}_s\}$ be a basis of W^{\perp} . Show that $\{\mathbf{w}_1, \ldots, \mathbf{w}_r, \mathbf{v}_1, \ldots, \mathbf{v}_s\}$ is a basis of \mathbb{R}^n .