NTNU - Trondheim Norwegian University of Science and Technology

Examination paper for TMA4115 Matematikk 3

Academic contact during examination: Antoine Julien ${ }^{\text {a }}$, Alexander Schmeding ${ }^{\text {b }}$, Gereon Quick ${ }^{\text {c }}$
Phone: ${ }^{a} 73597782$, b 40539912 , ${ }^{\text {c }} 48501412$

Examination date: 31 May 2016
Examination time (from-to): 09:00-13:00
Permitted examination support material: C: Simple Calculator (Casio fx-82ES PLUS, Citizen SR270X, Citizen SR-270X College, or Hewlett Packard HP30S), Rottmann: Matematiske formelsamling.

Other information:
Give reasons for all answers, ensuring that it is clear how the answers have been reached. Each of the 10 problems has the same weight.

Language: English
Number of pages: 15
Number pages enclosed: 0

Problem 1

a) For $z=(-1+i \sqrt{3})$, compute z^{3} and $|z|^{6}$.
b) Find all complex numbers z with $z^{3}=8 i$ and draw them in the complex plane.

Solution

a) The polar form of $(-1+i \sqrt{3})$ is $2 e^{i 2 \pi / 3}$. Hence

$$
(-1+i \sqrt{3})^{3}=\left(2 e^{i 2 \pi / 3}\right)^{3}=2^{3} e^{(i 2 \pi / 3) 3)}=8 e^{i 2 \pi}=8 \text { and }|z|^{6}=\left|z^{3}\right| \cdot\left|z^{3}\right|=64 .
$$

b) The polar form of $8 i$ is $8 e^{i \pi / 2}=2^{3} e^{i \pi / 2}$. For $z=r e^{i \theta}, z^{3}=8 i$ becomes

$$
2^{3} e^{i \pi / 2}=\left(r e^{i \theta}\right)^{3}=r^{3} e^{i 3 \theta}
$$

This holds if and only if $r=2$ and $\theta=\pi / 6+(2 \pi / 3) k$ for an integer k. It suffices to loook at the integers $k=0, k=1$ and $k=2$. These yield the solutions

$$
z_{0}=2 e^{i \pi / 6}=\sqrt{3}+i, z_{1}=2 e^{i 5 \pi / 6}=-\sqrt{3}+i \text { and } z_{2}=2 e^{i 3 \pi / 2}=-2 i .
$$

Problem 2

Consider the inhomogeneous differential equation

$$
\begin{equation*}
y^{\prime \prime}+6 y^{\prime}+9 y=\cos t \tag{1}
\end{equation*}
$$

a) Find the general solution of the associated homogeneous equation.
b) Find a particular solution of (1).
c) Find the unique solution of (1) that satisfies $y(0)=y^{\prime}(0)=0$.

Solution

a) The homogeneous equation is $y^{\prime \prime}+6 y^{\prime}+9 y=0$. The characteristic equation is $\lambda^{2}+6 \lambda+9=0$, which has a double solution $\lambda=-3$. Therefore, a fundamental system of solutions is $y_{1}=e^{-3 t}$ and $y_{2}=t e^{-3 t}$. The general solution is

$$
y_{h}=c_{1} e^{-3 t}+c_{2} t e^{-3 t} .
$$

b) We can look for a particular solution using undetermined coefficients, trying

$$
\begin{aligned}
y_{p} & =a \cos t+b \sin t \\
y_{p}^{\prime} & =-a \sin t+b \cos t \\
y_{p}^{\prime \prime} & =-a \cos t-b \sin t .
\end{aligned}
$$

By substituting, we get that y_{p} is a solution if and only if

$$
(-a+6 b+9 a) \cos t+(-b-6 a+9 b) \sin t=\cos t .
$$

Therefore we have a system $8 a+6 b=1$ and $-6 a+8 b=0$. The solution is $a=4 / 50$ and $b=3 / 50$. So $y_{p}=(1 / 50)(4 \cos t+3 \sin t)$.
c) From the two previous questions we know that the general solution is

$$
y=c_{1} e^{-3 t}+c_{2} t e^{-3 t}+(1 / 50)(4 \cos t+3 \sin t) .
$$

Setting $y(0)=0$ we get $c_{1}=-4 / 50$. Deriving, we get

$$
y^{\prime}=-3 c_{1} e^{-3 t}-3 c_{2} t e^{-3 t}+c_{2} e^{-3 t}+1 / 50(3 \cos t-4 \sin t) .
$$

Hence $y^{\prime}(0)=0$ means $-3 c_{1}+c_{2}+3 / 50=0$, that is $c_{2}=-15 / 50$. In the end, the solution we want is

$$
y=(1 / 50)\left((-4-15 t) e^{-3 t}+4 \cos t+3 \sin t\right) .
$$

Problem $3 \quad$ Let a be a real number and A be the matrix $\left[\begin{array}{rr}0 & a \\ -a & 0\end{array}\right]$.
a) Find a fundamental set of real solutions to the differential equation $\mathbf{x}^{\prime}=\mathbf{A x}$.
b) Solve the initial value problem $\mathbf{x}^{\prime}=A \mathbf{x}$, where $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.

Solution

a) The characteristic equation is $\lambda^{2}+a^{2}=0$, hence $\lambda= \pm a i$. We need an eigenvector corresponding to one of the eigenvalues. Take $\lambda=a i$. Then we must solve

$$
a\left[\begin{array}{rr}
-i & 1 \\
-1 & -i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=0
$$

as we know the matrix is not invertible we can look at the first row only, and we get $v_{2}=i v_{1}$. So a possible eigenvector is $\mathbf{v}=\left[\begin{array}{l}1 \\ i\end{array}\right]$.

A fundamental set of real solutions is then given by the functions $\mathbf{x}_{1}(t)=\operatorname{Re}(\mathbf{y}(t))$ and $\mathbf{x}_{2}(t)=\operatorname{Im}(\mathbf{y}(t))$, where $\mathbf{y}(t)=\mathbf{v} e^{\lambda t}$. We compute

$$
\begin{aligned}
\mathbf{y} & =\left[\begin{array}{l}
1 \\
i
\end{array}\right] e^{a i t} \\
& =\left[\begin{array}{c}
1 \\
i
\end{array}\right](\cos a t+i \sin a t) \\
& =\left[\begin{array}{c}
\cos a t+i \sin a t \\
-\sin a t+i \cos a t
\end{array}\right]
\end{aligned}
$$

We therefore have $\mathbf{x}_{1}(t)=\left[\begin{array}{c}\cos a t \\ -\sin a t\end{array}\right]$ and $\mathbf{x}_{2}(t)=\left[\begin{array}{c}\sin a t \\ \cos a t\end{array}\right]$.
b) The solution to the initial value problem is then $\mathbf{x}(t)=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}$. We find the constants from $\mathbf{x}(0)=c_{1} \mathbf{x}_{1}(0)+c_{2} \mathbf{x}_{2}(0)$. This linear system is immediately solvable as $\mathbf{x}_{1}(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{x}_{2}(0)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. We have $c_{1}=2$ and $c_{2}=1$, and the solution to the initial value problem is

$$
\mathbf{x}(t)=\left[\begin{array}{c}
2 \cos a t+\sin a t \\
-2 \sin a t+\cos a t
\end{array}\right] .
$$

Problem 4

Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], \mathbf{v}=\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{r}3 \\ 6 \\ -1\end{array}\right]$ be vectors in \mathbb{R}^{3}.
a) Write the vector $\mathbf{p}=\left[\begin{array}{r}2 \\ 4 \\ -10\end{array}\right]$ as a linear combination of \mathbf{u}, \mathbf{v} and \mathbf{w}.
b) Can you write the vector $\mathbf{q}=\left[\begin{array}{l}2 \\ 5 \\ 6\end{array}\right]$ as a linear combination of \mathbf{u}, \mathbf{v} and \mathbf{w} ?
c) Are $\mathbf{u}, \mathbf{v}, \mathbf{w}$ linearly independent?
d) What is the determinant of the matrix $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 6 & -1\end{array}\right]$?

Solution

a) In order to find scalars x_{1}, x_{2}, x_{3} with $x_{1} \mathbf{u}+x_{2} \mathbf{v}+x_{3} \mathbf{w}=\mathbf{p}$, we need to solve the linear system $A \mathbf{x}=\mathbf{p}$ with

$$
A=\left[\begin{array}{rrr}
1 & 2 & 3 \\
2 & 4 & 6 \\
1 & 6 & -1
\end{array}\right] .
$$

We do this by row operations on the augmented matrix

$$
\left[\begin{array}{rrrr}
1 & 2 & 3 & 2 \\
2 & 4 & 6 & 4 \\
1 & 6 & -1 & -10
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 2 & 3 & 2 \\
0 & 0 & 0 & 0 \\
0 & 4 & -4 & -12
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 2 & 3 & 2 \\
0 & 0 & 0 & 0 \\
0 & 1 & -1 & -3
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 5 & 0 & -7 \\
0 & 0 & 0 & 0 \\
0 & 1 & -1 & -3
\end{array}\right] .
$$

Hence we can choose x_{3} as a free variable, for example $x_{3}=1$. Then we get $x_{2}=-2$ and $x_{1}=3$. Hence $\mathbf{p}=3 \mathbf{u}-2 \mathbf{v}+\mathbf{w}$.
b) When we try the same for \mathbf{q}, we get

$$
\left[\begin{array}{rrrr}
1 & 2 & 3 & 2 \\
2 & 4 & 6 & 5 \\
1 & 6 & -1 & 6
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 2 & 3 & 2 \\
0 & 0 & 0 & 1 \\
0 & 4 & -4 & 4
\end{array}\right] .
$$

The second row corresponds to the false assertion $0=1$. Hence there is no solution to $A \mathbf{x}=\mathbf{q}$, and we cannot write \mathbf{q} as a linear combination of \mathbf{u}, \mathbf{v} and \mathbf{w}.
c) They are not linearly independent. There are several ways to see that. For example, we can deduce from the calculation in a) that $(-5) \mathbf{u}+\mathbf{v}+\mathbf{w}=\mathbf{0}$; or we use the second or third argument in d).
d) The determinant of A is 0 . There are many ways to see that. For example, we have just observed that the columns of A (which are \mathbf{u}, \mathbf{v} and \mathbf{w}) are linearly dependent; or we saw in a) that A is row equivalent to a matrix with a row with only zero entries; or we showed in b) that the linear transformation

$$
A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \mathbf{x} \mapsto A \mathbf{x}
$$

is not onto. Hence A is not invertible and $\operatorname{det} A=0$.

Problem 5

a) Find the inverse of the matrix $A=\left[\begin{array}{lll}2 & 2 & 0 \\ 0 & 0 & 1 \\ 4 & 2 & 0\end{array}\right]$.
b) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}+2 x_{2} \\
x_{3} \\
4 x_{1}+2 x_{2}
\end{array}\right] .
$$

Is T one-to-one?

Solution

a) To find A^{-1} we perform row operations on A to reduce it to the identity matrix:

$$
\begin{aligned}
& {\left[\begin{array}{lll:lll}
2 & 2 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
4 & 2 & 0 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll:lll}
2 & 2 & 0 & 1 & 0 & 0 \\
4 & 2 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
2 & 2 & 0 & 1 & 0 & 0 \\
0 & -2 & 0 & -2 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{rrr|rrr}
2 & 0 & 0 & -1 & 0 & 1 \\
0 & -2 & 0 & -2 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|rrr}
1 & 0 & 0 & -1 / 2 & 0 & 1 / 2 \\
0 & 1 & 0 & 1 & 0 & -1 / 2 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right] .
\end{aligned}
$$

Hence $A^{-1}=\left[\begin{array}{rrr}-1 / 2 & 0 & 1 / 2 \\ 1 & 0 & -1 / 2 \\ 0 & 1 & 0\end{array}\right]$.
b) T is one-to-one. There are at least two ways to see this. First, we could observe that A is the standard matrix of T (recall: the columns of the standard matrix are the images of the standard basis vectors e_{1}, e_{2}, e_{3} under T). Since A is invertible, A is, in particular, also one-to-one. Hence T is one-to-one, since $\mathbf{0}=T(\mathbf{x})=A \mathbf{x}$ implies $\mathbf{x}=\mathbf{0}$.

Second, we could just set $T(\mathbf{x})=\mathbf{0}$. This can only be true if all three equations $2 x_{1}+2 x_{2}=0, x_{3}=0$ and $4 x_{1}+2 x_{2}=0$ hold. But this is true only if $x_{1}=x_{2}=$ $x_{3}=0$. Hence $T(\mathbf{x})=\mathbf{0}$ implies $\mathbf{x}=\mathbf{0}$ and T is one-to-one.

Problem 6

Let A be the matrix

$$
A=\left[\begin{array}{rrrrr}
1 & 2 & 0 & 3 & 1 \\
2 & 4 & -1 & 5 & 4 \\
3 & 6 & -1 & 8 & 5 \\
5 & 4 & 8 & -1 & 1
\end{array}\right]
$$

a) Bring A into row echelon form.
b) Find a basis for $\operatorname{Col}(A)$ and determine the rank of A.
c) Determine the dimension of $\operatorname{Nul}(A)$.
d) Determine the dimensions of $\operatorname{Row}(A)$ and of $\operatorname{Nul}\left(A^{T}\right)$.

Solution

a) We use row operations to bring A into echelon form:

$$
\left[\begin{array}{rrrrr}
1 & 2 & 0 & 3 & 1 \\
2 & 4 & -1 & 5 & 4 \\
3 & 6 & -1 & 8 & 5 \\
5 & 4 & 8 & -1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}
1 & 2 & 0 & 3 & 1 \\
0 & 0 & -1 & -1 & 2 \\
0 & 0 & -1 & -1 & 2 \\
0 & -6 & 8 & -16 & -4
\end{array}\right]\left[\begin{array}{rrrrr}
1 & 2 & 0 & 3 & 1 \\
0 & -6 & 8 & -16 & -4 \\
0 & 0 & -1 & -1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

b) We observe that the first three columns of A are pivot columns. Hence the rank of A is 3 , and the vectors $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 5\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 6 \\ 4\end{array}\right],\left[\begin{array}{r}0 \\ -1 \\ -1 \\ 8\end{array}\right]$ form a basis of $\operatorname{Col}(A)$.
c) The dimension of $\operatorname{Nul}(A)$ is 2 . There are several ways to see this. One way is to observe that A has two non-pivot columns. Hence there are two free variables in the linear system corresponding to A. Another way is to use the Rank Theorem which tells us:

$$
\text { number of columns of } A=\operatorname{dim} \operatorname{Col}(A)+\operatorname{dim} \operatorname{Nul}(A)
$$

Hence $\operatorname{dim} \operatorname{Nul}(A)=5-3=2$.
d) The row echelon form of A tells us that A has three linearly independent rows. The dimension of the row space is therefore 3 .

The dimension of $\operatorname{Nul}\left(A^{T}\right)$ can be computed using the rank theorem and the fact $\operatorname{Col}\left(A^{T}\right)=\operatorname{Row}(A):$

$$
\text { number of rows of } A=\operatorname{dim} \operatorname{Col}\left(A^{T}\right)+\operatorname{dim} \operatorname{Nul}\left(A^{T}\right) \text {. }
$$

Hence $\operatorname{dim} \operatorname{Nul}\left(A^{T}\right)=4-3=1$.

Problem 7

The temperature in Bymarka during winter season can be either above, equal to or below 0° Celsius. Trondheim's ski club observes the following fluctuation of temperatures from one day to the next:

- If the temperature has been above 0°, there is a 70% chance that it will be above and a 10% chance that it will be below 0° the next day.
- If the temperature has been equal to 0°, there is a 10% chance that it will be above and a 10% chance that it will be below 0° the next day.
- If the temperature has been below 0°, there is a 10% chance that it will be above and a 70% chance that it will be below 0° the next day.

After many days of this pattern in the winter, for what temperature should a skier prepare his/her skies? (Give the probabilities for the three possible temperatures.)

Solution

The stochastic matrix which describes the probability of the temperature being above, equal or below 0° is

$$
A=\left[\begin{array}{lll}
0.7 & 0.1 & 0.1 \\
0.2 & 0.8 & 0.2 \\
0.1 & 0.1 & 0.7
\end{array}\right]
$$

We want to find the stationary vector, it is a probability vector (i.e. a vector whose entries are not negative and add up to 1) which satisfies $A v=v$. Thus we need to solve the system of linear equations with matrix $A-I$. After multiplying by 10 , Gauss elimination gives

$$
10(A-I)=\left[\begin{array}{rrr}
-3 & 1 & 1 \\
2 & -2 & 2 \\
1 & 1 & -3
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 1 & -3 \\
2 & -2 & 2 \\
-3 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 1 & -3 \\
0 & -4 & 8 \\
0 & 4 & -8
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 1 & -3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]
$$

The solutions satisfy $x_{2}=2 x_{3}$ and $x_{1}=-x_{2}+3 x_{3}=x_{3}$. Choosing $x_{3}=0.25$ yields $x_{1}=0.25$ and $x_{2}=0.5$. Hence the stationary probability vector is

$$
v=\left[\begin{array}{c}
0.25 \\
0.5 \\
0.25
\end{array}\right] .
$$

Thus the most likely case is that the temperature is $0^{\circ} C$ with a 50% chance. The probability for a temperature above $0^{\circ} C$ is 25% and the probability for a temperature below $0^{\circ} \mathrm{C}$ is also 25%.

Problem 8

Find the equation $y=m x+c$ of the line that best fits the data points $(0,4),(1,-1),(2,1),(3,-3)$ and $(4,-1)$.

Solution

We are looking for the least square solution of the system $A \mathbf{x}=\mathbf{b}$ with

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right], \mathbf{x}=\left[\begin{array}{r}
m \\
c
\end{array}\right], \mathbf{b}=\left[\begin{array}{r}
4 \\
-1 \\
1 \\
-3 \\
-1
\end{array}\right]
$$

To find the solution we solve the system $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ which is

$$
\left[\begin{array}{rr}
30 & 10 \\
10 & 5
\end{array}\right]\left[\begin{array}{r}
m \\
c
\end{array}\right]\left[\begin{array}{r}
-12 \\
0
\end{array}\right] .
$$

Gauss elimination gives

$$
\left[\begin{array}{rrr}
30 & 10 & -12 \\
10 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -2 & -6 \\
2 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -2 & -6 \\
0 & 5 & 12
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 0 & -6 / 5 \\
0 & 1 & 12 / 5
\end{array}\right]
$$

The solution is $m=-6 / 5$ and $c=12 / 5$. Thus the best fitting line is

$$
y=-6 / 5 x+12 / 5
$$

Problem 9

Let A be the matrix $\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right]$ and \mathbf{u} be the vector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
a) Verify that 2 is an eigenvalue of A and that \mathbf{u} is an eigenvector of A (possibly with an eigenvalue different from 2).
b) Find all the eigenvalues of A and a basis for each eigenspace of A.
c) Is A orthogonally diagonalizable? If so, orthogonally diagonalize A.

Solution

a) To check that \mathbf{u} is an eigenvector we just calculate

$$
A \mathbf{u}=\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 3 & 1 \\
1 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
5 \\
5
\end{array}\right]=5 \mathbf{u} .
$$

Hence \mathbf{u} is an eigenvector to the eigenvalue 5 .
To verify that a is an eigenvalue of A we show via row reductions that $(A-2 I) \mathbf{x}=\mathbf{0}$ has a nontrivial solution:

$$
A-2 I=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Hence not every column in $(A-2 I)$ is a pivot column and $(A-2 I) \mathbf{x}=\mathbf{0}$ has a nontrivial solution.
b) We have learned from a) that 5 and 2 are the eigenvalues of A. Moreover, every vector in \mathbb{R}^{3} of the form

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]
$$

is an eigenvector for the eigenvalue 2. Hence the two vectors $\mathbf{v}=\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{w}=$ $\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]$ form a basis of the eigenspace to eigenvalue 2 . Since the dimensions of all eigenspaces have to add up to 3 , we see that there are no other eigenvalues, and the eigenspace to eigenvalue 5 has dimension 1 with \mathbf{u} as a basis vector.
c) It remains to orthonormalize the basis $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$. Since A is a symmetric matrix, we know that \mathbf{u} is orthogonal to \mathbf{v} and \mathbf{w} (for \mathbf{u} corresponds to a different eigenvalue). Hence we just need to normalize \mathbf{u} and define a new basis vector

$$
\mathbf{v}_{1}:=\frac{1}{\|\mathbf{u}\|} \mathbf{u}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right] .
$$

Next we orthogonalize \mathbf{v} and \mathbf{w} using the Gram-Schmidt process. We keep \mathbf{v} and define a new vector $\tilde{\mathbf{w}}$ which is orthogonal to \mathbf{v} :

$$
\tilde{\mathbf{w}}:=\mathbf{w}-\frac{\mathbf{w} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{r}
-1 / 2 \\
-1 / 2 \\
1
\end{array}\right] .
$$

It remains to normalize \mathbf{v} and $\tilde{\mathbf{w}}$ to get the new vectors \mathbf{v}_{2} and \mathbf{v}_{3} :

$$
\mathbf{v}_{2}:=\frac{1}{\|\mathbf{v}\|} \mathbf{v}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right]
$$

and

$$
\mathbf{v}_{3}:=\frac{1}{\|\tilde{\mathbf{w}}\|} \tilde{\mathbf{w}}=\sqrt{\frac{2}{3}}\left[\begin{array}{r}
-1 / 2 \\
-1 / 2 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 / \sqrt{6} \\
-1 / \sqrt{6} \\
2 / \sqrt{6}
\end{array}\right] .
$$

Hence we can orthogonally diagonalize A as $A=P D P^{T}$ with
$D=\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right], P=\left[\begin{array}{rrr}1 / \sqrt{3} & -1 / \sqrt{2} & -1 / \sqrt{6} \\ 1 / \sqrt{3} & 1 / \sqrt{2} & -1 / \sqrt{6} \\ 1 / \sqrt{3} & 0 & 2 / \sqrt{6}\end{array}\right]$, and $P^{T}=\left[\begin{array}{rrr}1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3} \\ -1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\ -1 / \sqrt{6} & -1 / \sqrt{6} & 2 / \sqrt{6}\end{array}\right]$.

Problem 10

Let $W \subseteq \mathbb{R}^{n}$ be a subspace and W^{\perp} be its orthogonal complement.
a) Show that W^{\perp} is a subspace of \mathbb{R}^{n}.
b) Let \mathbf{w} be a vector which lies both in W and in W^{\perp} (i.e. $\mathbf{w} \in W \cap W^{\perp}$). Show that this implies $\mathbf{w}=\mathbf{0}$.
c) Let $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{r}\right\}$ be a basis of W and let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{s}\right\}$ be a basis of W^{\perp}. Show that $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{r}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{s}\right\}$ is a basis of \mathbb{R}^{n}.

Solution

a) Since the zero vector is orthogonal to every vector in \mathbb{R}^{n}, it is also an element in W^{\perp}. Let \mathbf{u}, \mathbf{v} be arbitrary vectors in W^{\perp}, w be an arbitrary vector in W, and λ be any real number. Then we have:

$$
(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}=0+0=0, \text { and }(\lambda \mathbf{u}) \cdot \mathbf{w}=\lambda(\mathbf{u} \cdot \mathbf{w})=\lambda \cdot 0=0 .
$$

Hence $\mathbf{u}+\mathbf{v} \in W^{\perp}$ and $\lambda \mathbf{u} \in W^{\perp}$, and W^{\perp} is indeed a subspace of \mathbb{R}^{n}.
b) Let \mathbf{w} be a vector which lies both in W and W^{\perp}. Then $\mathbf{w} \in W^{\perp}$ implies that \mathbf{w} is orthogonal to every vector in W and, in particular, \mathbf{w} is orthogonal to itself. That means $\mathbf{w} \cdot \mathbf{w}=0$, and hence \mathbf{w} must be the zero vector in \mathbb{R}^{n}.
c) We need to show that $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{r}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{s}\right\}$ is linearly independent and that it spans \mathbb{R}^{n}. We start with linear independence. Let $\lambda_{1}, \ldots, \lambda_{r}, \mu_{1}, \ldots, \mu_{s}$ be real numbers such that

$$
\lambda_{1} \mathbf{w}_{1}+\ldots+\lambda_{r} \mathbf{w}_{r}+\mu_{1} \mathbf{v}_{1}+\ldots+\mu_{s} \mathbf{v}_{s}=\mathbf{0} .
$$

This is equivalent to

$$
\lambda_{1} \mathbf{w}_{1}+\ldots+\lambda_{r} \mathbf{w}_{r}=-\left(\mu_{1} \mathbf{v}_{1}+\ldots+\mu_{s} \mathbf{v}_{s}\right) .
$$

But the vector $\lambda_{1} \mathbf{w}_{1}+\ldots+\lambda_{r} \mathbf{w}_{r}$ is an element in W, whereas the vector $-\left(\mu_{1} \mathbf{v}_{1}+\right.$ $\ldots+\mu_{s} \mathbf{v}_{s}$) is an element in W^{\perp}. By b), this implies

$$
\lambda_{1} \mathbf{w}_{1}+\ldots+\lambda_{r} \mathbf{w}_{r}=\mathbf{0}=\mu_{1} \mathbf{v}_{1}+\ldots+\mu_{s} \mathbf{v}_{s} .
$$

Since both sets $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{r}\right\}$ and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{s}\right\}$ are linearly independent, this implies $\lambda_{1}=\ldots=\lambda_{r}=0$ and $\mu_{1}=\ldots=\mu_{s}=0$. This shows that $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{r}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{s}\right\}$ is a linearly independent set of vectors.

It remains to show that $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{r}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{s}\right\}$ spans \mathbb{R}^{n}. Let \mathbf{y} be an arbitrary vector in \mathbb{R}^{n}. We learned that we can write \mathbf{y} as a $\operatorname{sum} \mathbf{y}=\operatorname{proj}_{W} \mathbf{y}+\mathbf{z}$ with $\operatorname{proj}_{W} \mathbf{y} \in W$ and $\mathbf{z} \in W^{\perp}$. By the assumptions, we can write $\operatorname{proj}_{W} \mathbf{y}$ as a linear combination of $\mathbf{w}_{1}, \ldots, \mathbf{w}_{r}$ and \mathbf{z} as a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{s}$. Hence we can also write \mathbf{y} as a linear combination of $\mathbf{w}_{1}, \ldots, \mathbf{w}_{r}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{s}$.

