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Problem 1

a) For z = (−1 + i
√

3), compute z3 and |z|6.

b) Find all complex numbers z with z3 = 8i and draw them in the complex
plane.

Solution

a) The polar form of (−1 + i
√

3) is 2ei2π/3. Hence

(−1 + i
√

3)3 = (2ei2π/3)3 = 23e(i2π/3)3) = 8ei2π = 8 and |z|6 = |z3| · |z3|= 64.

b) The polar form of 8i is 8eiπ/2 = 23eiπ/2. For z = reiθ, z3 = 8i becomes

23eiπ/2 = (reiθ)3 = r3ei3θ.

This holds if and only if r = 2 and θ = π/6 + (2π/3)k for an integer k. It suffices
to loook at the integers k = 0, k = 1 and k = 2. These yield the solutions

z0 = 2eiπ/6 =
√

3 + i, z1 = 2ei5π/6 =−
√

3 + i and z2 = 2ei3π/2 =−2i.



Page 2 of 15 TMA4115 | Matematikk 3 | 31. mai 2016 | 09:00–13:00

Problem 2

Consider the inhomogeneous differential equation

y′′+ 6y′+ 9y = cos t (1)

a) Find the general solution of the associated homogeneous equation.

b) Find a particular solution of (1).

c) Find the unique solution of (1) that satisfies y(0) = y′(0) = 0.

Solution

a) The homogeneous equation is y′′+ 6y′+ 9y = 0. The characteristic equation is
λ2 + 6λ+ 9 = 0, which has a double solution λ = −3. Therefore, a fundamental
system of solutions is y1 = e−3t and y2 = te−3t. The general solution is

yh = c1e
−3t+ c2te

−3t.

b) We can look for a particular solution using undetermined coefficients, trying

yp = acos t+ bsin t
y′p =−asin t+ bcos t
y′′p =−acos t− bsin t.

By substituting, we get that yp is a solution if and only if

(−a+ 6b+ 9a)cos t+ (−b−6a+ 9b)sin t= cos t.

Therefore we have a system 8a+6b= 1 and −6a+8b= 0. The solution is a= 4/50
and b= 3/50. So yp = (1/50)(4cos t+ 3sin t).

c) From the two previous questions we know that the general solution is

y = c1e
−3t+ c2te

−3t+ (1/50)(4cos t+ 3sin t).

Setting y(0) = 0 we get c1 =−4/50. Deriving, we get

y′ =−3c1e−3t−3c2te−3t+ c2e
−3t+ 1/50(3cos t−4sin t).

Hence y′(0) = 0 means −3c1 + c2 + 3/50 = 0, that is c2 =−15/50. In the end, the
solution we want is

y = (1/50)
(
(−4−15t)e−3t+ 4cos t+ 3sin t

)
.
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Problem 3 Let a be a real number and A be the matrix
[

0 a
−a 0

]
.

a) Find a fundamental set of real solutions to the differential equation x′ = Ax.

b) Solve the initial value problem x′ = Ax, where x(0) =
[
2
1

]
.

Solution

a) The characteristic equation is λ2 +a2 = 0, hence λ = ±ai. We need an eigen-
vector corresponding to one of the eigenvalues. Take λ= ai. Then we must solve

a

[
−i 1
−1 −i

][
v1
v2

]
= 0

as we know the matrix is not invertible we can look at the first row only, and we

get v2 = iv1. So a possible eigenvector is v =
[
1
i

]
.

A fundamental set of real solutions is then given by the functions x1(t) = Re(y(t))
and x2(t) = Im(y(t)), where y(t) = veλt. We compute

y =
[
1
i

]
eait

=
[
1
i

]
(cosat+ isinat)

=
[

cosat+ isinat
−sinat+ icosat

]

We therefore have x1(t) =
[

cosat
−sinat

]
and x2(t) =

[
sinat
cosat

]
.

b) The solution to the initial value problem is then x(t) = c1x1 + c2x2. We find
the constants from x(0) = c1x1(0) + c2x2(0). This linear system is immediately

solvable as x1(0) =
[
1
0

]
and x2(0) =

[
0
1

]
. We have c1 = 2 and c2 = 1, and the

solution to the initial value problem is

x(t) =
[

2cosat+ sinat
−2sinat+ cosat

]
.
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Problem 4

Let u =

1
2
1

, v =

2
4
6

 and w =

 3
6
−1

 be vectors in R3.

a) Write the vector p =

 2
4

−10

 as a linear combination of u, v and w.

b) Can you write the vector q =

2
5
6

 as a linear combination of u, v and w?

c) Are u, v, w linearly independent?

d) What is the determinant of the matrix A=

1 2 3
2 4 6
1 6 −1

?

Solution

a) In order to find scalars x1, x2, x3 with x1u +x2v +x3w = p, we need to solve
the linear system Ax = p with

A=

1 2 3
2 4 6
1 6 −1

 .
We do this by row operations on the augmented matrix1 2 3 2

2 4 6 4
1 6 −1 −10

→
1 2 3 2

0 0 0 0
0 4 −4 −12

→
1 2 3 2

0 0 0 0
0 1 −1 −3

→
1 5 0 −7

0 0 0 0
0 1 −1 −3

 .
Hence we can choose x3 as a free variable, for example x3 = 1. Then we get x2 =−2
and x1 = 3. Hence p = 3u−2v + w.

b) When we try the same for q, we get1 2 3 2
2 4 6 5
1 6 −1 6

→
1 2 3 2

0 0 0 1
0 4 −4 4

 .
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The second row corresponds to the false assertion 0 = 1. Hence there is no solution
to Ax = q, and we cannot write q as a linear combination of u, v and w.

c) They are not linearly independent. There are several ways to see that. For
example, we can deduce from the calculation in a) that (−5)u + v + w = 0; or we
use the second or third argument in d).

d) The determinant of A is 0. There are many ways to see that. For example,
we have just observed that the columns of A (which are u, v and w) are linearly
dependent; or we saw in a) that A is row equivalent to a matrix with a row with
only zero entries; or we showed in b) that the linear transformation

A : R3→ R3, x 7→ Ax

is not onto. Hence A is not invertible and detA= 0.
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Problem 5

a) Find the inverse of the matrix A=

2 2 0
0 0 1
4 2 0

.

b) Let T : R3→ R3 be the linear transformation defined by

T


x1
x2
x3


=

2x1 + 2x2
x3

4x1 + 2x2

 .
Is T one-to-one?

Solution

a) To find A−1 we perform row operations on A to reduce it to the identity matrix:2 2 0 | 1 0 0
0 0 1 | 0 1 0
4 2 0 | 0 0 1

→
2 2 0 | 1 0 0

4 2 0 | 0 0 1
0 0 1 | 0 1 0

→
2 2 0 | 1 0 0

0 −2 0 | −2 0 1
0 0 1 | 0 1 0



→

2 0 0 | −1 0 1
0 −2 0 | −2 0 1
0 0 1 | 0 1 0

→
1 0 0 | −1/2 0 1/2

0 1 0 | 1 0 −1/2
0 0 1 | 0 1 0

 .

Hence A−1 =

−1/2 0 1/2
1 0 −1/2
0 1 0

.

b) T is one-to-one. There are at least two ways to see this. First, we could observe
that A is the standard matrix of T (recall: the columns of the standard matrix are
the images of the standard basis vectors e1, e2, e3 under T ). Since A is invertible,
A is, in particular, also one-to-one. Hence T is one-to-one, since 0 = T (x) = Ax
implies x = 0.

Second, we could just set T (x) = 0. This can only be true if all three equations
2x1 + 2x2 = 0, x3 = 0 and 4x1 + 2x2 = 0 hold. But this is true only if x1 = x2 =
x3 = 0. Hence T (x) = 0 implies x = 0 and T is one-to-one.
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Problem 6

Let A be the matrix

A=


1 2 0 3 1
2 4 −1 5 4
3 6 −1 8 5
5 4 8 −1 1

 .

a) Bring A into row echelon form.

b) Find a basis for Col(A) and determine the rank of A.

c) Determine the dimension of Nul(A).

d) Determine the dimensions of Row(A) and of Nul(AT ).

Solution

a) We use row operations to bring A into echelon form:
1 2 0 3 1
2 4 −1 5 4
3 6 −1 8 5
5 4 8 −1 1

→


1 2 0 3 1
0 0 −1 −1 2
0 0 −1 −1 2
0 −6 8 −16 −4




1 2 0 3 1
0 −6 8 −16 −4
0 0 −1 −1 2
0 0 0 0 0

 .

b) We observe that the first three columns of A are pivot columns. Hence the rank

of A is 3, and the vectors


1
2
3
5

,


2
4
6
4

,


0
−1
−1

8

 form a basis of Col(A).

c) The dimension of Nul(A) is 2. There are several ways to see this. One way is to
observe that A has two non-pivot columns. Hence there are two free variables in
the linear system corresponding to A. Another way is to use the Rank Theorem
which tells us:

number of columns of A= dimCol(A) + dimNul(A)

Hence dimNul(A) = 5−3 = 2.
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d) The row echelon form of A tells us that A has three linearly independent rows.
The dimension of the row space is therefore 3.

The dimension of Nul(AT ) can be computed using the rank theorem and the fact
Col(AT ) = Row(A):

number of rows of A= dimCol(AT ) + dimNul(AT ).

Hence dimNul(AT ) = 4−3 = 1.
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Problem 7

The temperature in Bymarka during winter season can be either above, equal to
or below 0◦ Celsius. Trondheim’s ski club observes the following fluctuation of
temperatures from one day to the next:

• If the temperature has been above 0◦, there is a 70% chance that it will be
above and a 10% chance that it will be below 0◦ the next day.

• If the temperature has been equal to 0◦, there is a 10% chance that it will
be above and a 10% chance that it will be below 0◦ the next day.

• If the temperature has been below 0◦, there is a 10% chance that it will be
above and a 70% chance that it will be below 0◦ the next day.

After many days of this pattern in the winter, for what temperature should a skier
prepare his/her skies? (Give the probabilities for the three possible temperatures.)

Solution

The stochastic matrix which describes the probability of the temperature being
above, equal or below 0◦ is

A=

0.7 0.1 0.1
0.2 0.8 0.2
0.1 0.1 0.7

 .
We want to find the stationary vector, it is a probability vector (i.e. a vector whose
entries are not negative and add up to 1) which satisfies Av = v. Thus we need to
solve the system of linear equations with matrix A− I. After multiplying by 10,
Gauss elimination gives

10(A− I) =

−3 1 1
2 −2 2
1 1 −3

→
 1 1 −3

2 −2 2
−3 1 1

→
1 1 −3

0 −4 8
0 4 −8

→
1 1 −3

0 1 −2
0 0 0


The solutions satisfy x2 = 2x3 and x1 =−x2 +3x3 = x3. Choosing x3 = 0.25 yields
x1 = 0.25 and x2 = 0.5. Hence the stationary probability vector is

v =

0.25
0.5

0.25

 .
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Thus the most likely case is that the temperature is 0◦ C with a 50% chance.
The probability for a temperature above 0◦ C is 25% and the probability for a
temperature below 0◦ C is also 25%.
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Problem 8

Find the equation y =mx+ c of the line that best fits the data points
(0,4), (1,−1), (2,1), (3,−3) and (4,−1).

Solution

We are looking for the least square solution of the system Ax = b with

A=


0 1
1 1
2 1
3 1
4 1

 , x =
[
m
c

]
, b =


4
−1

1
−3
−1

 .

To find the solution we solve the system ATAx = ATb which is[
30 10
10 5

][
m
c

][
−12

0

]
.

Gauss elimination gives[
30 10 −12
10 5 0

]
→
[
1 −2 −6
2 1 0

]
→
[
1 −2 −6
0 5 12

]
→
[
1 0 −6/5
0 1 12/5

]
.

The solution is m=−6/5 and c= 12/5. Thus the best fitting line is

y =−6/5x+ 12/5.



Page 12 of 15 TMA4115 | Matematikk 3 | 31. mai 2016 | 09:00–13:00

Problem 9

Let A be the matrix

3 1 1
1 3 1
1 1 3

 and u be the vector

1
1
1

.

a) Verify that 2 is an eigenvalue of A and that u is an eigenvector of A (possibly
with an eigenvalue different from 2).

b) Find all the eigenvalues of A and a basis for each eigenspace of A.

c) Is A orthogonally diagonalizable? If so, orthogonally diagonalize A.

Solution

a) To check that u is an eigenvector we just calculate

Au =

3 1 1
1 3 1
1 1 3


1

1
1

=

5
5
5

= 5u.

Hence u is an eigenvector to the eigenvalue 5.

To verify that a is an eigenvalue of A we show via row reductions that (A−2I)x = 0
has a nontrivial solution:

A−2I =

1 1 1
1 1 1
1 1 1

→
1 1 1

0 0 0
0 0 0

 .
Hence not every column in (A− 2I) is a pivot column and (A− 2I)x = 0 has a
nontrivial solution.

b) We have learned from a) that 5 and 2 are the eigenvalues of A. Moreover, every
vector in R3 of the form

x =

x1
x2
x3

= x2

−1
1
0

+x3

−1
0
1


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is an eigenvector for the eigenvalue 2. Hence the two vectors v =

−1
1
0

 and w =
−1

0
1

 form a basis of the eigenspace to eigenvalue 2. Since the dimensions of all

eigenspaces have to add up to 3, we see that there are no other eigenvalues, and
the eigenspace to eigenvalue 5 has dimension 1 with u as a basis vector.

c) It remains to orthonormalize the basis {u,v,w}. Since A is a symmetric ma-
trix, we know that u is orthogonal to v and w (for u corresponds to a different
eigenvalue). Hence we just need to normalize u and define a new basis vector

v1 := 1
||u||

u = 1√
3

1
1
1

=


1√
3

1√
3

1√
3

 .

Next we orthogonalize v and w using the Gram-Schmidt process. We keep v and
define a new vector w̃ which is orthogonal to v:

w̃ := w−w ·v
v ·v

v =

−1
0
1

− 1
2

−1
1
0

=

−1/2
−1/2

1

 .

It remains to normalize v and w̃ to get the new vectors v2 and v3:

v2 := 1
||v||

v = 1√
2

−1
1
0

=

−1/
√

2
1/
√

2
0


and

v3 := 1
||w̃||

w̃ =
√

2
3

−1/2
−1/2

1

=

−1/
√

6
−1/
√

6
2/
√

6

 .

Hence we can orthogonally diagonalize A as A= PDP T with

D=

5 0 0
0 2 0
0 0 2

 , P =

1/
√

3 −1/
√

2 −1/
√

6
1/
√

3 1/
√

2 −1/
√

6
1/
√

3 0 2/
√

6

 , and P T =

 1/
√

3 1/
√

3 1/
√

3
−1/
√

2 1/
√

2 0
−1/
√

6 −1/
√

6 2/
√

6

 .
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Problem 10

Let W ⊆ Rn be a subspace and W⊥ be its orthogonal complement.

a) Show that W⊥ is a subspace of Rn.

b) Let w be a vector which lies both in W and in W⊥ (i.e. w ∈W ∩W⊥). Show
that this implies w = 0.

c) Let {w1, . . . ,wr} be a basis of W and let {v1, . . . ,vs} be a basis of W⊥. Show
that {w1, . . . ,wr,v1, . . . ,vs} is a basis of Rn.

Solution

a) Since the zero vector is orthogonal to every vector in Rn, it is also an element
in W⊥. Let u, v be arbitrary vectors in W⊥, w be an arbitrary vector in W , and
λ be any real number. Then we have:

(u + v) ·w = u ·w + v ·w = 0 + 0 = 0, and (λu) ·w = λ(u ·w) = λ ·0 = 0.

Hence u + v ∈W⊥ and λu ∈W⊥, and W⊥ is indeed a subspace of Rn.

b) Let w be a vector which lies both in W and W⊥. Then w ∈W⊥ implies that
w is orthogonal to every vector in W and, in particular, w is orthogonal to itself.
That means w ·w = 0, and hence w must be the zero vector in Rn.

c) We need to show that {w1, . . . ,wr,v1, . . . ,vs} is linearly independent and that
it spans Rn. We start with linear independence. Let λ1, . . . ,λr,µ1, . . . ,µs be real
numbers such that

λ1w1 + . . .+λrwr +µ1v1 + . . .+µsvs = 0.

This is equivalent to

λ1w1 + . . .+λrwr =−(µ1v1 + . . .+µsvs).

But the vector λ1w1 + . . .+λrwr is an element in W , whereas the vector −(µ1v1 +
. . .+µsvs) is an element in W⊥. By b), this implies

λ1w1 + . . .+λrwr = 0 = µ1v1 + . . .+µsvs.
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Since both sets {w1, . . . ,wr} and {v1, . . . ,vs} are linearly independent, this implies
λ1 = . . .= λr = 0 and µ1 = . . .= µs = 0. This shows that {w1, . . . ,wr,v1, . . . ,vs} is
a linearly independent set of vectors.

It remains to show that {w1, . . . ,wr,v1, . . . ,vs} spans Rn. Let y be an arbitrary
vector in Rn. We learned that we can write y as a sum y = projWy + z with
projWy ∈W and z ∈W⊥. By the assumptions, we can write projWy as a linear
combination of w1, . . . ,wr and z as a linear combination of v1, . . . ,vs. Hence we
can also write y as a linear combination of w1, . . . ,wr,v1, . . . ,vs.


