

Department of Mathematical Sciences

Examination paper for TMA4115 Matematikk 3

Academic contact during examination: Antoine Julien, Eugenia Malinnikova Phone: 73597782, 73550257

Examination date: 26th May, 2015

Examination time (from-to): 09:00-13:00

Permitted examination support material: C: Simple calculator (Casio fx-82ES PLUS, Citizen SR-270X or Citizen SR-270X College, Hewlett Packard HP30S), Rottmann: *Matematisk formelsamling*

Other information:

Give reasons for all answers, ensuring that it is clear how the answer has been reached. Each of the 12 problem parts has the same weight when grading.

Language: English Number of pages: 2 Number pages enclosed: 0

Checked by:

Problem 1 Solve the quadratic equation $z^2 + (4+2i)z + 3 = 0$, write the solutions in normal form.

Problem 2

a) Solve the initial value problem

$$x'' + 6x' + 8x = 0, \quad x(0) = 0, \ x'(0) = 8.$$

What is the maximal value attained by this solution x(t) for t > 0?

b) Find the steady-state solution of the equation

$$x'' + 6x' + 8x = 4\cos 2t.$$

Problem 3 Find general solution of the equation

$$y'' + y = 3x + \tan(x).$$

(Hint $\int (\cos x)^{-1} dx = \ln |\sec x + \tan x|$.)

Problem 4 Let

$$A = \begin{bmatrix} 1 & t \\ t & 2 \end{bmatrix}.$$

- a) For which values of t does the equation $A\mathbf{x} = \mathbf{b}$ have a solution for any \mathbf{b} in \mathbb{R}^2 ?
- **b)** Find an LU decomposition of A (the result will depend on the parameter t).

Problem 5 Given the following vectors in \mathbb{R}^4

$$\mathbf{v}_1 = \begin{pmatrix} 1\\0\\2\\0 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 0\\0\\1\\-1 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 4\\-3\\-2\\4 \end{pmatrix}, \quad \mathbf{v}_4 = \begin{pmatrix} 3\\-2\\1\\1 \end{pmatrix},$$

let $V = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}.$

- a) Are the vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ linearly independent? Find a basis for V.
- **b)** Find an orthogonal basis for V.
- c) Does there exist a vector $\mathbf{u} \neq \mathbf{0}$ in \mathbb{R}^4 which is orthogonal to $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$?

Problem 6

a) Find (complex) eigenvalues and (complex) eigenvectors of the matrix

$$\begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$$

b) Find the solution of the system

$$\begin{array}{rcl} x_1' = & x_1 - 2x_2 \\ x_2' = & x_1 + 3x_2 \end{array}$$

that satisfies the initial conditions $x_1(0) = 1$ and $x_2(0) = 1$. Write down the answer using real-valued functions.

Problem 7 Suppose that A is an $m \times n$ -matrix with real entries. Prove that $\mathbf{x} \cdot A^T A \mathbf{x} \ge 0$ for each \mathbf{x} in \mathbb{R}^n and therefore each real eigenvalue of the matrix $A^T A$ is non-negative.