Examination paper for TMA4110 Matematikk 3

Academic contact during examination: Eugenia Malinnikova
Phone: 73550257

Examination date: 26th May, 2015
Examination time (from-to): 09:00-13:00
Permitted examination support material: C: Simple calculator (Casio fx-82ES PLUS, Citizen SR-270X or Citizen SR-270X College, Hewlett Packard HP30S), Rottmann: Matematiske formelsamling

Language: English
Number of pages: 6
Number pages enclosed: 0

Problem 1 Solve the quadratic equation $z^{2}+(4+2 i) z+3=0$, write the solutions in normal form.

Solution We use the formula for solutions of the quadratic equation

$$
z_{1,2}=-(2+i) \pm \sqrt{(2+i)^{2}-3}=-2-i \pm \sqrt{4 i}=-2-i+2 \sqrt{i} .
$$

Now we have $i=e^{i \pi / 2}$ and then one of the roots is given by $\sqrt{i}=e^{i \pi / 4}=$ $\sqrt{2} / 2+\sqrt{2} / 2 i$. Thus

$$
\underline{z_{1}=-2+\sqrt{2}+(-1+\sqrt{2}) i, \quad \underline{z_{2}}=-2-\sqrt{2}+(-1-\sqrt{2}) i}
$$

Problem 2

a) Solve the initial value problem

$$
x^{\prime \prime}+6 x^{\prime}+8 x=0, \quad x(0)=0, x^{\prime}(0)=8 .
$$

What is the maximal value attained by this solution $x(t)$ for $t>0$?
Solution First we find the roots of the characteristic equation $\lambda^{2}+6 \lambda+8=0$, we have $\lambda_{1}=-2$ and $\lambda_{2}=-4$. Then the general solution to the homogeneous equation is $x(t)=c_{1} e^{-2 t}+c_{2} e^{-4 t}$. To find the constants, we use initial conditions, clearly, $x(0)=c_{1}+c_{2}$ and $x^{\prime}(0)=-2 c_{1}-4 c_{2}$. Solving the system, $c_{1}+c_{2}=$ $0,-2 c_{1}-4 c_{2}=8$ we obtain $c_{1}=4, c_{2}=-4$. Thus $x(t)=4 e^{-2 t}-4 e^{-4 t}$.

To find the maximum value, we compute $x^{\prime}(t)=-8 e^{-2 t}+16 e^{-4 t}$, if $e^{2 t_{0}}=2$ then x^{\prime} is positive on $\left(0, t_{0}\right)$ and negative on $\left(t_{0},+\infty\right)$. Therefore the maximum value of x on $(0,+\infty)$ is attained at t_{0} and $\underline{x\left(t_{0}\right)}=4 e^{-2 t_{0}}-4 e^{-4 t_{0}}=2-1=\underline{1}$.
b) Find the steady-state solution of the equation

$$
x^{\prime \prime}+6 x^{\prime}+8 x=4 \cos 2 t
$$

Solution We consider the complex equation $z^{\prime \prime}+6 z^{\prime}+8 z=4 e^{2 i t}$, such that the real part of a solution is a solution of our initial equation. We are looking for a solution of the form $z(t)=a e^{2 i t}$. We have

$$
z^{\prime \prime}+6 z^{\prime}+8 z=\left((2 i)^{2}+6(2 i)+8\right) a e^{2 i t}=P(2 i) z(t), P(w)=w^{2}+6 w+8
$$

Hence $z(t)=4 e^{2 i t} / P(2 i)$ and $1 / P(2 i)=(4+12 i)^{-1}=(1-3 i) / 40$ and

$$
z(t)=(0.1-0.3 i) e^{2 i t}=0.1 \cos 2 t+0.3 \sin 2 t+i(0.1 \sin 2 t-0.3 \cos 2 t)
$$

$$
x(t)=0.1 \cos 2 t+0.3 \sin 2 t .
$$

Alternative solution We use method of undetermined coefficients to find the particular solution of the form $x(t)=a \cos 2 t+b \sin 2 t$. The derivatives are: $x^{\prime}(t)=-2 a \sin 2 t+2 b \cos 2 t$ and $x^{\prime \prime}(t)=-4 a \cos 2 t-4 b \sin 2 t$. Then

$$
\begin{aligned}
x^{\prime \prime}+6 x+8 x=-4 a \cos 2 t-4 b \sin 2 t+6 & (-2 a \sin 2 t+2 b \cos 2 t)+8(a \cos 2 t+\sin 2 t) \\
& =(4 a+12 b) \cos 2 t+(4 b-12 a) \sin 2 t .
\end{aligned}
$$

We are solving the equation $x^{\prime \prime}+6 x^{\prime}+8 x=4 \cos 2 t$. Therefore we want to find a, b such that $4 a+12 b=4$ and $4 b-12 a=0$, we get $a=0.1, b=0.3$, the answer is

$$
x(t)=0.1 \cos 2 t+0.3 \sin 2 t .
$$

Problem 3 Find general solution of the equation

$$
y^{\prime \prime}+y=3 x+\tan (x) .
$$

(Hint $\left.\int(\cos x)^{-1} d x=\ln |\sec x+\tan x|.\right)$

Solution First, solutions of the corresponding homogeneous equation are $y_{1}(x)=$ $\cos x$ and $y_{2}(x)=\sin x$.

To find the solution of the non-homogeneous equation we divide the right handside into two parts, $r_{1}(x)=3 x$ and $r_{2}(x)=\tan x$. We can use the method of undetermined coefficients for the first part, we look for $y_{p_{1}}=a x+b$, then $y^{\prime \prime}=0$ and $y^{\prime \prime}+y=a x+b$, thus $y_{p_{1}}=3 x$ solves the equation $y^{\prime \prime}+y=3 x$.

For the second equation we use the method of variation of parameters,

$$
W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=\cos ^{2} x+\sin ^{2} x=1 .
$$

Thus $y_{p_{2}}=-y_{1} \int y_{2} \tan (x) d x+y_{2} \int y_{1} \tan (x) d x$,

$$
\begin{aligned}
& y_{p_{2}}(x)=-\cos x \int \frac{\sin ^{2} x}{\cos x} d x+\sin x \int \sin x d x= \\
& \quad-\cos x \int(\cos x)^{-1} d x+\cos x \int \cos x d x+\sin x \int \sin x d x= \\
& \quad-\cos x \ln |\sec x+\tan x|+\cos x \sin x-\sin x \cos x=-\cos x \ln |\sec x+\tan x|
\end{aligned}
$$

Summing up the terms, we get the general solution

$$
\underline{y(t)=y_{h}(t)+y_{p_{1}}(t)+y_{p_{2}}(t)=c_{1} \cos x+c_{2} \sin x+3 x-\cos x \ln |\sec x+\tan x|}
$$

Problem 4 Let

$$
A=\left[\begin{array}{ll}
1 & t \\
t & 2
\end{array}\right]
$$

a) For which values of t does the equation $A \mathbf{x}=\mathbf{b}$ have a solution for any \mathbf{b} in \mathbb{R}^{2} ?

Solution The equation $A \mathbf{x}=\mathbf{b}$ has a solution for all \mathbf{b} if and only if the matrix A is invertible. This happens if and only if $\operatorname{det}(A) \neq 0$. We have $\operatorname{det}(A)=2-t^{2}$. Thus the equation always has a solution when $t \neq \pm \sqrt{2}$.

Alternatively, we can start by performing Gauss elimination:

$$
\left[\begin{array}{ll}
1 & t \\
t & 2
\end{array}\right] \xrightarrow{R_{2}-t R_{1}}\left[\begin{array}{cc}
1 & t \\
0 & 2-t^{2}
\end{array}\right]
$$

There is no zero-rows in the final matrix if and only if $t \neq \sqrt{2}$. Thus the equation $A \mathbf{x}=\mathbf{b}$ has a solution for all \mathbf{b} if and only if $t \neq \pm \sqrt{2}$
b) Find an LU decomposition of A (the result will depend on the parameter $t)$.

Solution We apply Gauss elimination (see above) and get $U=\left[\begin{array}{cc}1 & t \\ 0 & 2-t^{2}\end{array}\right]$, to get L we remind that the only row operation in the Gauss elimination was adding $(-t)$ times the first row to the second one. Thus $L=\left[\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right]$, a simple computation confirms that

$$
A=\left[\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right]\left[\begin{array}{cc}
1 & t \\
0 & 2-t^{2}
\end{array}\right] .
$$

Problem 5 Given the following vectors in \mathbb{R}^{4}

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{c}
4 \\
-3 \\
-2 \\
4
\end{array}\right), \quad \mathbf{v}_{4}=\left(\begin{array}{c}
3 \\
-2 \\
1 \\
1
\end{array}\right)
$$

let $V=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$.
a) Are the vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ linearly independent? Find a basis for V.

Solutuon We consider the matrix with column vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ and $\mathbf{v}_{\mathbf{4}}$ and perform the Gauss elimination to find out if the columns are linearly dependent or not.

$$
\begin{aligned}
C & =\left[\begin{array}{cccc}
1 & 0 & 4 & 3 \\
0 & 0 & -3 & -2 \\
2 & 1 & -2 & 1 \\
0 & -1 & 4 & 1
\end{array}\right] \xrightarrow{R_{3}-2 R_{1}}\left[\begin{array}{cccc}
1 & 0 & 4 & 3 \\
0 & 0 & -3 & -2 \\
0 & 1 & -10 & -5 \\
0 & -1 & 4 & 1
\end{array}\right] \xrightarrow{S W A P\left(R_{2}, R_{3}\right)} \\
& {\left[\begin{array}{cccc}
1 & 0 & 4 & 3 \\
0 & 1 & -10 & -5 \\
0 & 0 & -3 & -2 \\
0 & -1 & 4 & 1
\end{array}\right] \xrightarrow{R_{4}+R_{2}}\left[\begin{array}{cccc}
1 & 0 & 4 & 3 \\
0 & 1 & -10 & -5 \\
0 & 0 & -3 & -2 \\
0 & 0 & -6 & -4
\end{array}\right] \xrightarrow{R_{4}-2 R_{3}}\left[\begin{array}{cccc}
1 & 0 & 4 & 3 \\
0 & 1 & -10 & -5 \\
0 & 0 & -3 & -2 \\
0 & 0 & 0 & 0
\end{array}\right] }
\end{aligned}
$$

Since there is no pivot element in the last column, the columns are linearly dependent. There are pivot elements in the first three columns, thus $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \overline{\left.\mathbf{v}_{3}\right\}}\right.$ form a basis for V.
b) Find an orthogonal basis for V.

Solution We use the Gram-Schmidt algorithm to find an orthogonal basis:

$$
\begin{gathered}
\mathbf{u}_{1}=\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right) \\
\tilde{\mathbf{u}}_{2}=\mathbf{v}_{2}-\frac{\mathbf{v}_{2} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}=\left(\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right)-\frac{2}{5}\left(\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right)=\frac{1}{5}\left(\begin{array}{c}
-2 \\
0 \\
1 \\
-5
\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{c}
-2 \\
0 \\
1 \\
-5
\end{array}\right) \\
\mathbf{u}_{3}=\mathbf{v}_{3}-\frac{\mathbf{v}_{3} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}-\frac{\mathbf{v}_{3} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}=\left(\begin{array}{c}
4 \\
-3 \\
-2 \\
4
\end{array}\right)-\frac{0}{5}\left(\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right)-\frac{-30}{30}\left(\begin{array}{c}
-2 \\
0 \\
1 \\
-5
\end{array}\right)=\left(\begin{array}{c}
2 \\
-3 \\
-1 \\
-1
\end{array}\right)
\end{gathered}
$$

c) Does there exist a vector $\mathbf{u} \neq \mathbf{0}$ in \mathbb{R}^{4} which is orthogonal to $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$?

Yes, since according to part (a) the dimension of V is three and V is a subspace of \mathbb{R}^{4}, there exists a non-zero vector \mathbf{u} in V^{\perp}. One can find such vector by solving the system $C^{T} \mathbf{u}=0$;for example $\mathbf{u}=\left[\begin{array}{lll}-2 & -2 & 1\end{array}\right]^{T}$ is such a vector.

Problem 6

a) Find (complex) eigenvalues and (complex) eigenvectors of the matrix

$$
\left[\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right]
$$

Solution First, the characteristic polynomial is $\operatorname{det}(B-\lambda I)=(1-\lambda)(3-\lambda)+2=$ $\lambda^{2}-4 \lambda+5=(\lambda-2)^{2}+1$. The roots are $\underline{\lambda_{1}}=2+i, \underline{\lambda_{2}}=\overline{\lambda_{1}}=2-i$. We find an eigenvector corresponding to λ_{1},

$$
B-(2+i) i=\left[\begin{array}{cc}
-1-i & -2 \\
1 & 1-i
\end{array}\right], \quad \mathbf{v}_{1}=\left[\begin{array}{c}
2 \\
-1-i
\end{array}\right]
$$

For $\lambda_{2}=\overline{\lambda_{1}}$, we obtain $\mathbf{v}_{2}=\overline{\mathbf{v}_{1}}=\left[\begin{array}{c}2 \\ -1+i\end{array}\right]$.
b) Find the solution of the system

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}-2 x_{2} \\
& x_{2}^{\prime}=x_{1}+3 x_{2}
\end{aligned}
$$

that satisfies the initial conditions $x_{1}(0)=1$ and $x_{2}(0)=1$. Write down the answer using real-valued functions.

Solution We know that $\mathbf{v}_{1} e^{\lambda_{1} t}$ and $\mathbf{v}_{2} e^{\lambda_{2} t}$ are (complex conjugate) solutions of this system, we find two real solutions:

$$
\begin{aligned}
& \frac{1}{2}\left(\left[\begin{array}{c}
2 \\
-1-i
\end{array}\right] e^{(2+i) t}+\left[\begin{array}{c}
2 \\
-1+i
\end{array}\right] e^{(2-i) t}\right) \\
= & \frac{e^{2 t}}{2}\left(\left[\begin{array}{c}
2 \\
-1-i
\end{array}\right](\cos t+i \sin t)+\left[\begin{array}{c}
2 \\
-1+i
\end{array}\right](\cos t-i \sin t)\right)=e^{2 t}\left[\begin{array}{c}
2 \cos t \\
-\cos t+\sin t
\end{array}\right] \\
& \frac{1}{2 i}\left(\left[\begin{array}{c}
2 \\
-1-i
\end{array}\right] e^{(2+i) t}-\left[\begin{array}{c}
2 \\
-1+i
\end{array}\right] e^{(2-i) t}\right)=e^{2 t}\left[\begin{array}{c}
2 \sin t \\
-\cos t-\sin t
\end{array}\right]
\end{aligned}
$$

General solution is a linear combination of these two,

$$
\mathbf{x}(t)=a_{1} e^{2 t}\left[\begin{array}{c}
2 \cos t \\
-\cos t+\sin t
\end{array}\right]+a_{2} e^{2 t}\left[\begin{array}{c}
2 \sin t \\
-\cos t-\sin t
\end{array}\right] .
$$

Then $\mathbf{x}(0)=\left[\begin{array}{c}2 a_{1} \\ -a_{1}-a_{2}\end{array}\right]$ and the initial conditions give $a_{1}=0.5$ and $a_{2}=-1.5$. Finally

$$
\mathbf{x}(t)=\left[\begin{array}{l}
\cos t-3 \sin t \\
\cos t+2 \sin t
\end{array}\right]
$$

Alternative solution General solution has the form

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} \exp \left(\lambda_{1} t\right)+c_{2} \mathbf{v}_{2} \exp \left(\lambda_{2} t\right)
$$

where $\lambda_{1,2}$ are eigenvalues, $\mathbf{v}_{1,2}$ are corresponding eigenvectors and $c_{1,2}$ are some constants. The initial conditions imply

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right]=c_{1}\left[\begin{array}{c}
2 \\
-1-i
\end{array}\right]+c_{2}\left[\begin{array}{c}
2 \\
-1+i
\end{array}\right],
$$

and solving the linear system, we obtain $c_{1}=(1+3 i) / 4, c_{2}=(1-3 i) / 4$. Then we have

$$
\begin{gathered}
\underline{\mathbf{x}(t)=\frac{e^{2 t}}{4}\left((1+3 i)(\cos t+i \sin t)\left[\begin{array}{c}
2 \\
-1-i
\end{array}\right]+(1-3 i)(\cos t-i \sin t)\left[\begin{array}{c}
2 \\
-1+i
\end{array}\right]\right)} \begin{array}{c}
=\frac{e^{2 t}}{4}\left((\cos t-3 \sin t+i(\sin t+3 \cos t))\left[\begin{array}{c}
2 \\
-1-i
\end{array}\right]\right. \\
\left.+(\cos t-3 \sin t-i(\sin t+3 \cos t))\left[\begin{array}{c}
2 \\
-1+i
\end{array}\right]\right)=e^{2 t}\left[\begin{array}{c}
\cos t-3 \sin t \\
\cos t+2 \sin t
\end{array}\right]
\end{array}, ~
\end{gathered}
$$

Problem $7 \quad$ Suppose that A is an $m \times n$-matrix with real entries. Prove that $\mathbf{x} \cdot A^{T} A \mathbf{x} \geq 0$ for each \mathbf{x} in \mathbb{R}^{n} and therefore each real eigenvalue of the matrix $A^{T} A$ is non-negative.

Solution First, note that $\mathbf{x} \cdot A^{T} A \mathbf{x}=\mathbf{x}^{T} A^{T} A \mathbf{x}=(A \mathbf{x})^{T} A \mathbf{x}=\|A \mathbf{x}\|^{2} \geq 0$.
If $A^{T} A \mathbf{v}=\lambda \mathbf{v}$ for some real λ and $\mathbf{v} \neq \mathbf{0}$ then $0 \leq \mathbf{v} \cdot A^{T} A \mathbf{v}=\mathbf{v} \cdot \lambda \mathbf{v}=\lambda\|\mathbf{v}\|^{2}$ and since $\|\mathbf{v}\|^{2}>0$ we conclude that $\lambda \geq 0$.

