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Newton'’s divided differences for the data:

0] 0
1-0 _
= =1 —1/2-1 3
1] 1 121 _ 3,
1/2-1 _ 1
-1 — 72
2 [1/2
Thus 3 3 .
()—0+1:1;—Z(z—1) ——z2+Zm.

Application of the Laplace-transform to the equation gives us
s%Y — sy(0) — v/(0) + 3sY — 3y(0) + 2Y = L(tu(t — 1)).
The right hand side computes to

Lut—1)=L(t-1)+1u(t—1)) =e °L(t+1) i
' | S+ {

:6_5(3_2_-*_%) =e s?

Inserting this and the initial conditions into the transformed equation, we obtain

szY_—s-i-1+331f—3a}_//= e—ssy.

Noting that
(s> +3s+ 1)= (s+2)(s+1)

we obtain that e |
(s+2)(s+1)Y =s+2+¢"°

52
and thus 1 1
Y=s+1+e. s+g)
A%
YHs+d —s
s+&)_E2(s+a)zL s+2? 2 s(s+ﬂ}é—f s+2,
Thus
y(t)— (+1 —8(1‘&.’.{,"_%‘{.

+u(t—1)(t—1—1+e%t D)

+u(t—1)(\ t -3 *.\ [
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a) The ODE can be written

2’ + zy'(z) + y(z)

III( ) 1 + $3
Define '
z1(z) y(z)
z(z) = | 22(z) | = | ¥'(2)
z3(z) y"(z)
Then
2 (z) Y (z) y'(z) z(z)
Z(r)=12z)| = |y'(z) | = , yl,l(-'f) =, z3(z)
“ z:’;(m) y///(z) z +a:1{_{(_::!+y§m] T +mzlz_('_a;!+z1gz)

b) We have z/(z) = f(z,z(z)) with

23
f(z,2z) = . 43
Thpflﬁ'c'k"Wftrdﬁ.Eﬁﬁ method is z(™*t1) = 2(® 4 Af(z,.1,2(*)), Withn =0
> find

(n+1) zgn) z£n+1}
§n+1) — Zgn) h Z:(in+1)
Z(n+1) Z(n) h2+hz£ﬂ+”+z£"+l}
3 3 T+RT
or in matrix form
1 h 0 ZinH] zgn)
0o, 1, -h||]= go
- —h
1+h T+hZ 1 Z:(;H_l) {'n) + m}'
t y

With h = 2, we have no guarantee of convergence of G-S iteration. With
h = 1/2, the matrix in the system above is strictly diagonally dominant, so the
iteration method is guaranteed to converge.

a) Standard formulas give (Kreyszig, p. 484)

aO:%/Lf(I)d-T:l/L(L—J:)da;:E,
/ f(z)cos ( /(L .'z:)cos( )1,-
= )(( '_“ 1) n €N,

(njr-
b, =0, mneN.
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Thus

L 2L & (-1)h-1
flx) = Tt -7r—2n=l 3 cos (

L 4L & 1 (2n — D)z :
754{-?;(2”_1)2005( T )s ze@,L].

b) Standard formulas give (Kreyszig, p. 484)

nnx
7)

a0==Q
a, =0. neN,
b =i/L f(z)sin(m)da:=E/L(L—z)sin(m)dx
" LJ.L L L L
2L v
=—, neN.

- )
nm

Thus

(@) = 27;’: B %m(%), ze (0,3}

n=1

c) For z € (0, L) we have

0 = Fourier series in (b) — Fourier series in (a)

2L &1 . nwz L. 4L & 1 on — )7
T Esm(—L—)—(51’?;(271—1)2“’5((nL)x))

T

which can easily be rewritten to the given expression. When z = 0 the Fouries
series in (a) sums to L while the Fourier series in (b) sums to zero. Thus the
left-hand side equals —L/2 for z = 0. When z = L, both Fourier series sum to
zero, and thus the identity is still valid for z = L.

n=1

d) Parseval's formula (Kreyszig, p. 497, replace w by L) gives for the functions in

(a)
[o o] 1 L
2a2 + Z a2 = f/ f(z)%dz
n=1 -L
Thus :

1,, w— 1602 2,
3+ 2 ey = 3t

n=1

or -~
1

a2, 1., T
(2n—1)¢ ~ 16L2 <§L T ) T 96

n=1
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We take the Fourier transform (Kreyzsig, p. 527)

F(f+g)=Vorfg

2 1 d 2

= ar %e‘“ (- ) F(oe™)

VIT o
Yo

2mE _ 24 _y?
wew/4ew/4

4 iw}‘(e‘zz)

27T'Z _w2/2
z v¢

N 2mt d _ w2
daiv Vi
Here we also used the formula for the Fourier transform of the derivative (Kreyzsig,

p. 526).
Using that F~'(h)(z) = F(h)(—z) (Kreyzsig, p. 523f) we see that

frg= F_1(_i7f_id%e_w2;2)

2wl ___ 17 4 _,
_ 47rz]__ 1<%e 2/2)

211 d 2

_ 4

== ]:(dwe )( z)

RTINS e (T
1 272

2n ze =12,

@ a) Standard separation of variables gives
F'+kF=0, G"-kG=0

for some constant k € R. Three cases to be considered:

(i) k = —A% < 0. Using the boundary condition 0 = F'(0) = F'(m) we see that
F is identically zero.

(ii) & = 0. Using the boundary condition 0 = F'(0) = F'(w), we see that F'
constant is the only solution.

(iii) £ = A2 > 0. Using the boundary condition 0 = F'(0) = F'(w), we see in
the standard manner that A =n € Z and

F(z) = Bpcos(nz), ne€Z,

for any constant 3, € R. Since cosinus is an even function it suffices to consider
nonnegative integers.

Using this result for the equation for G, we infer that

G(y) = Ane™ + Bpe™, neN,
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for any constants A,, B, € R. For n = 0 we find G(y) = Aoy + Bp for constants
Ag, By € R.
Thus the general solution of the form u = FG reads

Aoy + B, for n =0,

u(z,y) = F(z)G(y) = un(z,y) = {cos(n:l:) (Ane™ + Bpe™™), forne€N.

b) The general solution reads

o0 [» o]
u(z,y) = Z un(z,y) = Aoy + Bo + Z cos(nz)(Ane™ + Bpe™™).

n=0 n=1

The boundary condition at y = 0 yields

u(z,0) = By + i cos(nz)(An + Bn) = 0.

n=1

By the uniqueness of Fourier series we conclude that By = 0 and A, = —B,
for n € N. The boundary condition at y = 0 yields

o0}
uy(z, g—) = Ay + Z cos(nz)ndy ("™ + e=""/?)
n=1

= (1 + cos(z))?
=1+ 2cos(z) + cos®(x)

= g + 2cos(z) + %COS(Z’L’).

Again by the uniqueness of Fourier series we conclude that Ag = 3/2, 14; (e"/ 24
e~™/?) = 2, and 2A4,(e™ + ") = 1/2, while all the other constants vanish. We

may write
1 1

A= —— S S
'™ Cosh(r/2)’ Az 8 cosh(m)
Thus

u(z,y) = §y + = cos(z)(e¥ —e7¥) + cos(2z) (e?¥ — e~ ).

1
27 " cosh(n/2) 8 cosh()
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