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1 a) Compute Laplace transform of

f(t) = tet.

• By definition, we have

F (s) =

∫ ∞
0

tete−st dt =

∫ ∞
0

te−(s−1)t dt = L(t)(s− 1) =
1

(s− 1)2
.

b) Compute the inverse Laplace transform L−1(F )(t) of the following function

F (s) :=
s+ 3

s(s− 1)(s+ 2)
.

(Hint: you can use partial fraction decomposition).

• Notice that

A

2s
+

B

3(s− 1)
+

C

6(s+ 2)
=

3A(s− 1)(s+ 2) + 2Bs(s+ 2) + Cs(s− 1)

6s(s− 1)(s+ 2)
,

comparing the coefficients gives

3A+ 2B + C = 0, 3A+ 4B − C = 6, −6A = 18.

Thus
A = −3, B = 4, C = 1,

and therefore

L−1(F )(t) = −L−1( 3
2s

)(t) + L−1( 4

3(s− 1)
)(t) + L−1( 1

6(s+ 2)
)(t).

This then yields

f(t) = −3

2
+

4

3
et +

1

6
e−2t.

c) Use Laplace transform to find the solution of

y′(t)− y(t) = et + e−t, with y(0) = π.
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• Applying the Laplace transform, we get

sY − π − Y =
1

s− 1
+

1

s+ 1
,

thus
Y =

1

(s− 1)2
+

1

s2 − 1
+

π

(s− 1)
,

which gives

y(t) = πet + tet + sinh t = πet + tet +
et − e−t

2
.

2 a) Let
∑

n∈Z cne
inx be the complex Fourier series of the following function

f(x) = 1− x2, x ∈ (−π, π).

Compute cn.

• Observe that f(x) is an even function (f(x) = f(−x)). Its Fourier cosine series
computes

f(x) = 1− π2

3
+
∑
n>0

4(−1)n+1

n2
cos(nx).

Now, using that einx = cos(nx) + i sin(nx) and noticing that f(x) sin(nx) is an odd
function, a direct computation gives

1− x2 = 1− π2

3
−
∑
n∈Z
n 6=0

2(−1)n

n2
einx.

Thus

c0 = 1− π2

3
,

and

cn =
2(−1)n+1

n2
, n 6= 0.

b) Compute the Fourier transform of

f(x) = xe−|x|.

•We can either compute it directly or use the identity d
dω f̂(ω) = F(−ixf(x))(ω). In

fact, we have

F(e−|x|)(ω) = 1√
2π

∫ ∞
−∞

e−|x|e−iωxdx

=
1√
2π

∫ ∞
0

e−xe−iωxdx+
1√
2π

∫ 0

−∞
exe−iωxdx.

After a few steps, this yields

F(e−|x|)(ω) =
√

2

π

1

ω2 + 1
.
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Thus, using d
dω f̂(ω) = F(−ixf(x))(ω), gives

F(−ixe−|x|)(ω) =
√

2

π

−2ω
(ω2 + 1)2

,

which yields

F(xe−|x|)(ω) =
√

2

π

−2iω
(ω2 + 1)2

.

3 a) Mat 4N: Show that for a 6= 0

F(f(at))(ω) = 1

|a|
F(f(t))(ω

a
)

• Recall that by definition we have

f̂(ω) =
1√
2π

∫ ∞
−∞

f(x)e−iωx dx.

Thus with a 6= 0 we have

F(f(at))(ω) = 1√
2π

∫ ∞
−∞

f(at)e−iωt dt.

Now replace at by x, we get dx = adt, or t = x/a and dt = 1
adx. Then, for a > 0 we

find
F(f(at))(ω) = 1

a
F(f(t))(ω

a
).

For a < 0 we obtain
F(f(at))(ω) = −1

a
F(f(t))(ω

a
).

This implies that for a 6= 0

F(f(at))(ω) = 1

|a|
F(f(t))(ω

a
).

b) Mat 4D: Show that the heat kernel h(x, t) := 1√
2πt
e−

x2

2t satisfies ht = 1
2hxx.

• If
h(x, t) =

1√
2πt

e−
x2

2t ,

then

ht =
1√
2π
· −1
2
· t
−3
2 · e−

x2

2t +
1√
2πt

e−
x2

2t · −x
2

2
· −1
t2

=
x2 − t
2t2

h,

and

hx = −x
t
h, hxx = −1

t
h+

x2

t2
h =

x2 − t
t2

h.

Thus we get that

ht =
1

2
hxx. (1)
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4 a) Solve the following heat equation

ut =
1

2
uxx, t ≥ 0, 0 ≤ x ≤ π,

with the boundary conditions

u(t, 0) = u(t, π) = 0, ∀ t ≥ 0;

and the initial condition

u(0, x) = sin 3x+ sin 5x, ∀ 0 ≤ x ≤ π.

• Step 1: Separating variables: Find solutions of the form

u(t, x) = G(t)F (x).

Since
ut = G′F, uxx = GF ′′,

our equation becomes

G′F =
1

2
GF ′′,

thus
2G′

G
=
F ′′

F
≡ k.

Step 2: Fit boundary conditions: Notice that the boundary conditions

G(t)F (0) = G(t)F (π) = 0,

are equivalent to
F (0) = F (π) = 0.

In case k = 0, then F ′′ ≡ 0, i.e F (x) = ax+ b. The boundary conditions imply then
that F ≡ 0.

In case k = µ2 > 0, then the general solution for

F ′′ = µ2F

is F (x) = Aeµx +Be−µx. The boundary conditions imply this time that

A+B = 0, Aeµπ +Be−µπ = 0,

thus A = B = 0.

Hence, the only possible case is k = −p2 < 0, then the general solution for

F ′′ = −p2F

is F (x) = A cos px+B sin px, such that F (0) = 0 gives A = 0. Thus F (x) = B sin px,
B 6= 0, but F (π) = 0 gives sin pπ = 0, i.e.

p = n, n = 1, 2, . . .

(notice that sin−px = − sin px, thus up to a constant they give the same solution).
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Summary: The boundary condition implies that p2 = n2, n = 1, 2, . . . , and

F (x) = Fn(x) = sinnx.

Now we can solve

G′ = −n
2

2
G

and get

Gn(t) = Bne
−n2

2
t.

Thus the general solution is

u(t, x) =
∞∑
n=1

Bne
−n2

2
t sinnx.

Step 3: Fit the initial conditions: We have

u(0, x) =

∞∑
n=1

Bn sinnx = f(x).

By the uniqueness of the Fourier sine series, we get

B3 = B5 = 1, Bn = 0, if n 6= 3, 5.

Thus
u(t, x) = e−

9
2
t sin 3x+ e−

25
2
t sin 5x.

5 a) Find a polynomial p(x) ∈ P3 interpolating the points

xi −2 0 1 2

yi 0 1 9/8 0
.

• In this case, the easy solution is to use finite differences and Newton interpolation.
The table of finite differences is:

−2 0
1/2

0 1 −1/8
1/8 −1/8

1 9/8 −5/8
−9/8

2 0

and the interpolation polynomial becomes:

p(x) =
1

2
(x+ 2)− 1

8
(x+ 2)x− 1

8
(x+ 2)x(x− 1) = 1 +

1

2
x− 1

4
x2 − 1

8
x3.
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6 The integral ∫ b

a
f(x)dx

can be approximated by the quadrature formula

Q(a, b) =
3h

2

(
f(x1) + f(x2)

)
with

h =
b− a
3

, x1 = a+ h and x2 = a+ 2h.

a) Apply the quadrature rule to the integral∫ 2

1
x ln(x)dx.

• In this case, h = 1/3, x1 = 4/3 and x2 = 5/3, so the quadrature rule gives

Q(1, 2) =
1

2

(
4

3
ln(

4

3
) +

5

3
ln(

5

3
)

)
= 0.617476.

(For comparision, the exact integral I(1, 2) = 2 ln(2)− 3/4 = 0.636294.)

b) Find the degree of precision of the quadrature rule. You can use the interval
[a, b] = [−1, 1].

• The quadrature is of precision d if
∫ b
a x

kdx = Q(a, b)[xk] for k = 0, 1, . . . , d. And
the choice of interval does not matter, so we use the suggested [−1, 1]. In this case
h = 2/3, x1 = −1/3 and x2 = 1/3, resulting in Q(−1, 1)[xk] = xk1 + xk2.

k
∫ 1
−1 x

kdx Q(−1, 1)[xk])
0 2 2
1 0 0
2 2/3 2/9

So, the precision of the method is only d = 1.

7 a) The following pyhton-code is given:

x = 2.5
for k in range (100):

x_new = (3*x**4 + 24*x**2 -16)/(8*x**3)
# Stop the iterations when ..
x = x_new

Write down the fixed point iteration scheme which is implemented here.
Suggest an appropriate stopping criterium, and write down the corresponding
python code.
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• The fixed point iteration is xk = g(xk) with

xk+1 =
3x4k + 24x2k − 16

8x3k

and x0 = 2.5.

Stop the iterations when |xk+1−xk| ≤ Tol, where Tol is some user defined tolerance.
So the code with a stopping criterium could be something like

x = 2.5
Tol = 1.e-4
for k in range (100):

x_new = (3*x**4 + 24*x**2 -16)/(8*x**3)
if abs(x_new -x) <= Tol:

x = x_new
break

x = x_new

b) Given that the fixed point r is known, and all computations are done with very
high accuracy. In this case, the error ek = |r − xk| for each k would be printed
out as follows:

k = 1, error = 9.50e-03
k = 2, error = 1.06e-07
k = 3, error = 1.49e-22
k = 4, error = 4.14e-67

Use this to estimate the rate of convergence for this iteration scheme.

• The rate of convergence is p if ek+1 ≈ Cepk. This can be estimated by

ek+1 ≈ Cepk
ek+2 ≈ Cepk+1

⇒ ek+1

ek+2
≈
(

ek
ek+1

)p
⇒ p ≈

log

(
ek+1

ek+2

)
log

(
ek
ek+1

)
which for the results in the table gives:

k = 1 p ≈
log

(
1.06·10−7

1.49·10−22

)
log

(
9.50·10−3

1.06·10−7

) = 3.00

k = 2 p ≈
log

(
1.49·10−22

4.14·10−67

)
log

(
1.06·10−7

1.49·10−22

) = 3.00

Alternatively, just test for which p the factor ek+1/e
p
k is almost constant:

k ek+1/ek ek+1/e
2
k ek+1/e

3
k ek+1/e

4
k

1 1.12 · 10−5 1.17 · 10−3 0.124 13.1
2 1.41 · 10−15 1.33 · 10−8 0.125 1.18 · 106
3 2.78 · 10−45 1.86 · 10−23 0.124 8.39 · 1020

.
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So we observe cubic convergence (p = 3).

8 The following Runge–Kutta method is given:

k1 = f(xn,yn),

k2 = f(xn +
h

2
,yn +

h

2
k1),

yn+1 = yn + hk2.

a) Do one step with step size h = 0.1 using the above method on the problem:

y′1 = y1 + xy22, y1(1) = 1.0,

y′2 = y1y2, y2(1) = −1.0.

• We have:
y = [y1, y2]

T , f = [y1 + xy22, y1y2]
T ,

and the initial values are:

y(1) = y0 = [1,−1]T , x0 = 1.

So we get for n = 0:

k1 = [2,−1]T ,

y0 +
h

2
k1 = [1.10,−1.05]T

k2 = [2.2576,−1.155]T

y1 = [1.2258,−1.116]T .

b) Find the stability function R(z) for this function. Find also the corresponding
stability interval.

• Use the method to solve the linear test equation

y′ = λy, λ < 0.

The stability function R(z) is defined by

yn+1 = R(z)yn, z = hλ,

which in this case can be found by:

k1 = λyn

k2 = λ(yn +
h

2
λyn) = λ

(
1 +

hλ

2

)
yn

yn+1 = yn + hλ

(
1 +

hλ

2

)
yn = (1 + z +

z2

2
)yn
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so the stability function is

R(z) = 1 + z +
z2

2
.

The stability interval is defined

S = {z ∈ R : |R(z)| ≤ 1},

that is the set of z for which both inequalities

1 + z +
z2

2
≤ 1 and 1 + z +

z2

2
≥ −1

are satisfied. The first is satisfied if −2 ≤ z ≤ 0, the second is satisfied for all z. So
we can conclude that

S = [−2, 0].

9 a) In this exercise you are asked to set up a finite difference scheme for the two
point boundary value problem

u′′ + 2u = x2, u′(0) + u(0) = 0, u(1) = 2,

defined on the interval 0 ≤ x ≤ 1.
Let N be the number of grid points with h = 1/N , and let Ui be the approxi-
mations to the exact solution u(xi) in the gridpoints xi = ih for i = 0, 1, . . . , N .
Set up the finite difference scheme for a general N in the form

AU = b,

where U = [U0, U1, . . . , UN ]
T , that is, set up the matrix A and the vector b.

• Approximate u′′(x) at some grid point xi by a central difference formula:

u′′(xi) ≈
u(xi+1)− 2u(xi) + u(xi−1)

h2
,

and let Ui ≈ u(xi) be the approximation to the solution in the gridpoints. So, for
each inner gridpoint, the difference formula corresponding to the differential equation
is

Ui+1 − 2Ui + Ui−1
h2

+ 2Ui = x2i , i = 1, 2, . . . , N − 1. (*)

From the right boundary condition we see that UN = u(1) = 2. The left boundary
condition is treated by using a false boundary, assuming we have an artifical grid
point x−1 = −h. Then, using a central difference

u′(0) ≈ u(x1)− u(x−1)
2h

and let U−1 ≈ u(x−1) the discrete version of the boundary condition u′(0)+u(0) = 0
is

U1 − U−1
2h

+ U0 = 0.
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So there are two difference equations for i = 0, that is, this one describing the bound-
ary condition and (*) approximating the equation. Solve the boundary difference
equation with respect to U−1:

U−1 = U1 + 2hU0.

Use this in (*) with i = 0:

U1 − 2U0 + (U1 + 2hU0)

h2
+ 2U0 = 02 ⇒ 2U1 − (2− 2h)U0

h2
+ 2U0 = 0.

Multiplying by h2 on both sides, and using xi = ih gives the following scheme:

−2(1− h− h2)U0 + 2U1 = 0,

Ui−1 − 2(1− h2)Ui + Ui+1 = h2x2i , i = 1, 2, . . . , N − 1.

UN = 2.

This can be written as a linear system of equations AU = b, that is

−2(1− h− h2) 2 0 · · · 0 0
1 −2(1− h2) 1 · · · 0 0
0 1 −2(1− h2) · · · 0 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 1 −2(1− h2) 1 0
0 1 −2(1− h2) 1
0 · · · 0 0 1





U0

U1

U2

...

...
UN−2

UN−1

UN


=



0
h2x21
h2x22

...

...
h2x2N−2

h2x2N−1

2


.
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