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Problem 1 [15 points]

There are four versions of this exercise with different constants c = −1,−2, 2, 3.

The function f is given as

f(t) =

1, 0 ≤ t ≤ 1,
c, t > 1.

(1)

a) Compute the Laplace transform of f .

Solution: By the definition of the step function u(t− a), we can write

f = 1 + (c− 1)u(t− 1)

thus the Laplace transform formula for the step function gives

F (s) = 1/s+ (c− 1)e−s/s.

Input c = −1,−2, 2, 3 gives the final results respectively.

b) Show that

L
(∫ t

0
e−xy(x)dx

)
= Y (s+ 1)

s
,

where L denotes the Laplace transform and Y := L(y).

Solution: Notice that ∫ t

0
e−xy(x)dx = e−t

∫ t

0
et−xy(x)dx = e−t(et ∗ y),

where et ∗ y denotes the Laplace transform. Using the s-shifting theorem, we get

L(e−tet ∗ y) = L(et ∗ y)(s+ 1) = Y (s+ 1)
s

By the Laplace convolution theorem, we have

L(et ∗ y) = L(et) · Y = Y (s)/(s− 1),

which gives
L(et ∗ y)(s+ 1) = Y (s+ 1)

s
.

The proof is complete.
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An alternative approach is to note that the function

z(t) :=
∫ t

0
e−xy(x) dx

solves the ODE
z′(t) = e−ty(t), z(0) = 0.

By the s-shift theorem, the Laplace transform of e−xy(x) is Y (s + 1). Computing the Laplace
transform of the ODE yields

sL(z)(t) = Y (s+ 1).

Now we may divide by s and arrive at the desired result.

c) Use the formula in part b) in order to find the solution y(x) of∫ t

0
e−xy(x) dx = f(t).

Here f is the function defined in (1).

Solution:

Apply the Laplace transform to both sides, by a) and b), we get

Y (s+ 1)/s = 1/s+ (c− 1)e−s/s

hence
Y (s+ 1) = 1 + (c− 1)e−s.

By a change of variable, we get
Y (s) = 1 + (c− 1)e−(s−1)

which gives y(x) = δ(x) + (c− 1)e δ(x− 1). Input c = −1,−2, 2, 3 gives the final results respectively.
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Problem 2 [5 points]

There are four versions of this exercise with different constants α = −1,−2, 2, 3.

Find the complex Fourier series of the function

f(x) =

eix + α, 0 ≤ x ≤ π,

eix − 1, −π ≤ x < 0.

Solution:

Notice that we can write f as eix + g, where

g(x) =
{
α, 0 ≤ x ≤ π,
−1, −π ≤ x < 0.

Hence it suffices to compute the Fourier series for g and add eix to the final result.

For c0 we get

c0 = 1
2π
(∫ 0

−π
−1dx+

∫ π

0
αdx

)
= (α− 1)/2.

For other cn, we have

cn = 1
2π
(∫ 0

−π
−e−inxdx+ α

∫ π

0
e−inxdx

)
.

Since
∫ π
−π e

−inxdx = 0, we get
∫ 0
−π −e−inxdx =

∫ π
0 e
−inxdx, which gives

cn = α+ 1
2π

∫ π

0
e−inxdx = α+ 1

2π · 1− (−1)n

in
.

Notice that 1− (−1)n = 0 when n is even and 1− (−1)n = 2 when n is odd, thus

f(x) = eix + α− 1
2 +

∑
n odd

1 + α

iπn
einx.

Input α = −1,−2, 2, 3 gives the final results respectively.
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Problem 3 [10 points]

Use the convolution theorem for the Fourier transform in order to find the function f that
solves the equation ∫ +∞

−∞
e−(x−t)2

f(t) dt =
√

2π xe−x2/2.

Solution: Take the Fourier transform. The Fourier convolution theorem gives

√
2πf̂(w) · 1√

2
e−w

2/4 =
√

2πx̂e−x2/2.

Now we use that
xe−x

2/2 = −(e−x2/2)′,

which implies that
x̂e−x2/2 = −iwê−x2/2 = −iwe−x2/2.

Now the first identity reduces to

√
2πf̂(w) · 1√

2
e−w

2/4 =
√

2π(−iwe−w2/2),

which gives
f̂(w) = −iw

√
2e−w2/4 = −2iwê−t2 = (−2)(̂e−t2)′,

(the final identity uses again that ĝ′ = iwĝ) from which we know that the Fourier transform of f
is equal to the Fourier transform of (−2)(e−t2)′. Now we know that f must be equal to (−2)(e−t2)′
(you can use, for example, the Fourier inversion formula to prove this), hence we get

f(t) = (−2)(e−t2)′ = 4te−t2 .
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Problem 4 TMA4135 Mathematics 4D: [5 points]

Let f, g be two smooth functions and let c > 0 be a constant. Show that the function
u(x, t) := f(cx+ t) + g(2cx− 2t) + sin cx cos t

satisfies the wave equation uxx = c2utt.

Solution:

Both uxx and c2utt equal

c2f ′′(cx+ t) + 4c2g′′(2cx− 2t)− c2 sin cx cos t.

Problem 4 TMA4130 Mathematics 4N: [5 points]

Show that the Fourier transform of

f(x) =

x2, |x| < 1,
0, |x| ≥ 1,

is the function

f̂(w) =


1
3 ·
√

2
π
, w = 0,√

2
π

(
sinw
w

+ 2 cosw
w2 − 2 sinw

w3

)
, w 6= 0,

Solution:

By definition

f̂(0) = 1√
2π

∫ 1

−1
x2 = 1

3 ·
√

2
π
,

and when w 6= 0 we have

f̂(w) = 1√
2π

∫ 1

−1
x2e−ixw.

Integration by parts gives∫ 1

−1
x2e−ixw = x2 e

−ixw

−iw
|1−1 −

∫ 1

−1
2xe

−ixw

−iw
= 2sinw

w
+
∫ 1

−1
2xe

−ixw

iw

and ∫ 1

−1
2xe

−ixw

iw
= 2xe

−ixw

w2 |
1
−1 −

∫ 1

−1
2e
−ixw

w2 = 4cosw
w2 − 4sinw

w3

Hence
f̂ =

√
2
π

(sinw
w

+ 2 cosw
w2 − 2 sinw

w3

)
.
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Problem 5 [20 points]

Consider the heat equation
ut = c2uxx + α (2)

where c > 0 and α ∈ R are given constants.

a) Show that the function
w(x, t) = α

2c2x(π − x)

satisfies the equation wt = c2wxx + α.

b) Find the solution of equation (2) for x ∈ [0, π] and t > 0 with the boundary conditions

u(0, t) = u(π, t) = 0, t > 0,

and the initial condition

u(x, 0) = α

2c2x(π − x) +

0, 0 ≤ x < π
2 ,

x− π, π
2 < x ≤ π.

c) Find limt→∞ u(x, t).

Solution:

a) We have wt = 0, and wxx = −α/c2, which implies that wt − c2wxx = α.

b) Consider the function v = u− w. Linearity (or superposition) implies that v satisfies

vt = c2vxx, v(0, t) = v(π, t) = 0, t > 0,

(note that w vanishes at x = 0 and π), with initial data

v(x, 0) = u(x, 0)− w(x, 0) =
{

0, 0 ≤ x < π
2 ,

x− π, π
2 < x ≤ π.

Standard separation of variables (Kreyszig, pp. 558ff) gives that

v(x, t) =
∞∑
n=1

Bn sin(nx)e−(cn)2t

where Bn are given as the Fourier coefficients of the initial data, thus

v(x, 0) =
∞∑
n=1

Bn sin(nx) =
{

0, 0 ≤ x < π
2 ,

x− π, π
2 < x ≤ π.
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Standard formulas for Fourier series yield

Bn = 2
π

∫ π

0
sin(nx)w(x, 0)dx

= 2
π

∫ π

π/2
sin(nx)(x− π)dx

= 2
π

[
−
∣∣∣π
π/2

1
n

cos(nx)(x− π) + 1
n

∫ π

π/2
cos(nx)dx

]
= − 1

n
cos

(nπ
2
)
− 2
πn2 sin

(nπ
2
)
.

Thus the answer reads

u(x, t) = w(x, t) + v(x, t)

= α

2c2x(π − x)−
∞∑
n=1

( 1
n

cos
(nπ

2
)

+ 2
πn2 sin

(nπ
2
))

sin(nx)e−(cn)2t.

c) We see that each term in the infinite sum contains the exponentially decaying factor e−(cn)2t. Thus
these terms will all vanish in the limit when t→∞. Hence

u(x, t)→ α

2c2x(π − x), t→∞.
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Problem 6 [10 points]

There are four versions of this exercise with slightly different assumptions.

We are given a continuously differentiable function g : [0, 1]→ R with the following properties:

Version I:

• g(0) = 0.2 and g(1) = 0.7.

• 0.1 ≤ g′(x) ≤ 0.9 for all 0 ≤ x ≤ 1.

Version II:

• g(0) = 0.7 and g(1) = 0.2.

• −0.9 ≤ g′(x) ≤ −0.1 for all 0 ≤ x ≤ 1.

Version III:

• g(0) = 0.4 and g(1) = 0.8.

• 0.2 ≤ g′(x) ≤ 0.8 for all 0 ≤ x ≤ 1.

Version IV:

• g(0) = 0.8 and g(1) = 0.4.

• −0.8 ≤ g′(x) ≤ −0.2 for all 0 ≤ x ≤ 1.

The remaining part of the exercise is the same for all versions.

We consider now the fixed point iteration

xk+1 = g(xk)

with x0 = 0.

a) Show that the function g has a unique fixed point r in the interval [0, 1] and that the
fixed point iteration converges to r.

b) Provide an upper bound for the number of iterations that are required until |xk − r| ≤
10−6.
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Solution:

Part a), Version I: Since g′(x) ≥ 0.1, the function g is (strictly) increasing. Since moreover g(0) ≥ 0
and g(1) ≤ 1, it follows that 0 ≤ g(x) ≤ 1 for all x ∈ [0, 1]. That is, the function g maps the interval
[0, 1] to itself. Moreover, the derivative of g satisfies the condition |g′(x)| ≤ L := 0.9 < 1 for all
x ∈ [0, 1]. Thus all the conditions of the fixed point theorem are satisfied, and therefore g has a
unique fixed point r in the interval [0, 1] and the fixed point iteration converges to r.

Version II: Here the function is strictly decreasing, and g(0) ≤ 1, g(1) ≥ 0. Else the argumentation
is the same as for version I.

Version III: Here we have that |g(x)| ≤ L := 0.8 < 1. Else the argumentation is the same as for
version I.

Version IV: Here the function is strictly decreasing, and g(0) ≤ 1, g(1) ≥ 0. Moreover, |g(x)| ≤
L := 0.8 < 1. Else the argumentation is the same as for version I.

Part b) For the number of iterations, we have the a–priori error estimate

|xk − r| ≤
Lk

1− L |g(x0)− x0|.

Thus we need that
Lk

1− L |g(x0)− x0| ≤ 10−6

or, as x0 = 0,
Lk ≤ 10−6 (1− L)

|g(x0)| .

Taking logarithms on each side and dividing by log(L) (note that log(L) < 0, which explains why the
inequality is reversed!), we obtain the condition

k ≥ 1
log(L) log

(
10−6 (1− L)

|g(x0)|

)
.

Version I: Here we have L = 0.9 and g(x0) = 0.2. This results in the estimate

k ≥ log 0.5 · 10−6

log 0.9 ≈ 137.7.

That is, we need at most 138 iterations.

Version II: Here we have L = 0.9 and g(x0) = 0.7. This results in the estimate

k ≥ log((1/7) · 10−6)
log 0.9 ≈ 149.6.
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That is, we need at most 150 iterations.

Version III: Here we have L = 0.8 and g(x0) = 0.4. This results in the estimate

k ≥ log 0.5 · 10−6

log 0.8 ≈ 65.01.

That is, we need at most 66 iterations.

Version IV: Here we have L = 0.8 and g(x0) = 0.8. This results in the estimate

k ≥ log 0.25 · 10−6

log 0.8 ≈ 68.1.

That is, we need at most 69 iterations.

Alternatives:

Replacing |g(x0)− x0| by 1 (which is the length of the interval) in the a–priori error estimate yields
also a valid solution, though the estimate is weaker. For versions I and II, this results in 153 iterations;
for versions III and IV in 70 iterations.

Finally, an alternative is the estimate

|xk − r| ≤ Lk|x0 − r| ≤ Lk,

which yields the estimate
k ≥ log(10( − 6))/ log(L).

For versions I and II, this yields at most 132 iterations; for versions III and IV, at most 62 iterations.
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Problem 7 [10 points]

Consider the data points
xi −2 −1 1 2

f(xi) −5 0 1 4

a) Use Lagrange interpolation to find the polynomial of minimal degree interpolating these
points. Express the polynomial in the form

pn(x) = anx
n + · · ·+ a1x+ a0.

b) Determine the Newton form of the interpolating polynomial.

c) Verify that the solutions in (a) and (b) are the same.

d) Use your result to find an approximation to f(0).

Solution:

a) With x0 = −2, x1 = −1, x2 = 1, x3 = 2, we get the following cardinal functions:

`0(x) =
3∏
j=1

x− xj
x0 − xj

= (x+ 1)(x− 1)(x− 2)
(−2− (−1))(−2− 1)(−2− 2) = x3 − 2x2 − x+ 2

−12

`2(x) =
∏
j 6=2

x− xj
x2 − xj

= (x+ 2)(x+ 1)(x− 2)
(1 + 2)(1 + 1)(1− 2) = x3 + x2 − 4x− 4

−6

`3(x) =
∏
j 6=3

x− xj
x3 − xj

= (x+ 2)(x+ 1)(x− 1)
(2 + 2)(2 + 1)(2− 1) = x3 + 2x2 − x− 2

12

There is no need to compute `1(x) because the function value is zero.

The interpolating polynomial in Lagrange form is

p(x) = −5`0(x) + `2(x) + 4`3(x)

=
(

5
12x

3 − 10
12x

2 − 5
12x+ 10

12

)
+
(
x3 + x2 − 4x− 4

−6

)
+
(

4
12x

3 + 8
12x

2 − 4
12x−

8
12

)
= 7

12x
3 − 1

3x
2 − 1

12x+ 10
12
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b) Newton form:
−2 −5

5
−1 0 −3

2
1
2

7
12

1 1 5
6

3
2 4

Polynomial:
p(x) = −5 + (x− (−2))

(
5 + (x− (−1))

(
−3

2 + 7
12(x− 1)

))
c) Simplify one of the forms, for example:

p(x) = −5 + (x− (−2))
(
5 + (x− (−1))

(
−3

2 + 7
12(x− 1)

))
= −5 + (x− (−2))

(
5 + (x− (−1))

(
−3

2 + 7
12x−

7
12

))
= −5 + (x− (−2))

(
5 + (x− (−1))

(
−25

12 + 7
12x

))
= −5 + (x− (−2))

(
5 + (x+ 1)

(
−25

12 + 7
12x

))
= −5 + (x− (−2))

(
5 +

(
−25

12x+ 7
12x

2 − 25
12 + 7

12x
))

= −5 + (x− (−2))
(
5 +

(
7
12x

2 − 18
12x−

25
12

))
= −5 + (x− (−2))

(
60
12 +

(
7
12x

2 − 18
12x−

25
12

))
= −5 + (x− (−2))

(
7
12x

2 − 18
12x+ 35

12

)
= −5 + (x+ 2)

(
7
12x

2 − 18
12x+ 35

12

)
= −5 + ( 7

12x
3 − 18

12x
2 + 35

12x+ 14
12x

2 − 36
12x+ 70

12)
= −60

12 + ( 7
12x

3 − 1
3x

2 − 1
12x+ 70

12)
= 7

12x
3 − 1

3x
2 − 1

12x+ 10
12

d) Use the expanded form to get f(0) ≈ p(0) = 7
12 · 0

3 − 1
3 · 0

2 − 1
12 · 0 + 10

12 = 10
12 .
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Problem 8 [5 points]

Let

f(x) =

1/(x+ 1)2, if x > 0,
x+ 1, if x ≤ 0.

Find an approximation to
∫ 1
−1 f(x)dx using Simpson’s rule, and compute the error.

Solution:

Approximative solution: ∫ 1

−1
f(t)dt ≈ 1

3 (f(−1) + 4f(0) + f(1))

= 1
3

(
0 + 4 · 1 + 1

4

)
= 4

3 + 1
12

= 17
12

Exact solution:

∫ 1

−1
f(t)dt =

∫ 0

−1
f(t)dt+

∫ 1

0
f(t)dt

=
∫ 0

−1
(x+ 1)dt+

∫ 1

0
1/(x+ 1)2dt

=
[1

2x
2 + x

]0

−1
+
[
− 1
x+ 1

]1

0

=
(

0−
(
−1

2

))
+
(
−1

2 − (−1)
)

= 1
2 + 1

2
= 1

Error: e = 17
12 − 1 = 5

12
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Problem 9 [8 points]

There are four versions of this exercise, each with a different RK-method.

We are given the following python code, in which one step of a Runge–Kutta method is
implemented.

Version I:

def onestep(f, x, y, h):
k1 = f(x, y)
k2 = f(x+h/4, y+h*k1/4)
k3 = f(x+h, y+h*(k1+k2)/2)
y_next = y + h*(2*k2/3+k3/3)
x_next = x + h
return x_next, y_next

Version II:

def onestep(f, x, y, h):
k1 = f(x, y)
k2 = f(x+h/2, y+h*k1/2)
k3 = f(x+h, y+h*(k1+k2)/2)
y_next = y + h*(k1/3+k2/3+k3/3)
x_next = x + h
return x_next, y_next

Version III:

def onestep(f, x, y, h):
k1 = f(x, y)
k2 = f(x+2*h/3, y+2*h*k1/3)
k3 = f(x+h, y+h*(k1+k2)/2)
y_next = y + h*(5*k1/12+k2/4+k3/3)
x_next = x + h
return x_next, y_next

Version IV:
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def onestep(f, x, y, h):
k1 = f(x, y)
k2 = f(x+3*h/4, y+3*h*k1/4)
k3 = f(x+h, y+h*(k1+k2)/2)
y_next = y + h*(4*k1/9+2*k2/9+k3/3)
x_next = x + h
return x_next, y_next

Write down the Butcher tableau of the method, and determine the method’s order.

Solution:

The Butcher tableaux are:

Version I Version II Version III Version IV
0 0 0 0

1/4 1/4 0 0
1 1/2 1/2 0

0 2/3 1/3

0 0 0 0
1/2 1/2 0 0
1 1/2 1/2 0

1/3 1/3 1/3

0 0 0 0
2/3 2/3 0 0
1 1/2 1/2 0

5/12 1/4 1/3

0 0 0 0
3/4 3/4 0 0
1 1/2 1/2 0

4/9 2/9 1/3

The order conditions are:

Version I:
• p = 1: The condition

∑
i bi = 1 yields: 0 + 2/3 + 1/3 = 1, which is satisfied.

• p = 2: The condition
∑
i bici = 1/2 yields: 0 + 2

3
1
4 + 1

3 = 1
6 + 1

3 = 1
2 , which is satisfied.

• p = 3: The condition
∑
i bic

2
i = 1/3 yields: 0 + 2

3
1
16 + 1

3 6=
1
3 .

Version II:
• p = 1: The condition

∑
i bi = 1 yields: 1/3 + 1/3 + 1/3 = 1, which is satisfied.

• p = 2: The condition
∑
i bici = 1/2 yields: 0 + 1

3
1
2 + 1

3 = 1
6 + 1

3 = 1
2 , which is satisfied.

• p = 3: The condition
∑
i bic

2
i = 1/3 yields: 0 + 1

3
1
4 + 1

3 6=
1
3 .

Version III:
• p = 1: The condition

∑
i bi = 1 yields: 5/12 + 1/4 + 1/3 = 1, which is satisfied.

• p = 2: The condition
∑
i bici = 1/2 yields: 0 + 1

4
2
3 + 1

3 = 1
6 + 1

3 = 1
2 , which is satisfied.

• p = 3: The condition
∑
i bic

2
i = 1/3 yields: 0 + 1

4
4
9 + 1

3 6=
1
3 .
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Version IV:
• p = 1: The condition

∑
i bi = 1 yields: 4/9 + 2/9 + 1/3 = 1, which is satisfied.

• p = 2: The condition
∑
i bici = 1/2 yields: 0 + 2

9
3
4 + 1

3 = 1
6 + 1

3 = 1
2 , which is satisfied.

• p = 3: The condition
∑
i bic

2
i = 1/3 yields: 0 + 2

9
9
16 + 1

3 6=
1
3 .

Thus all the methods are of order 2.
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Problem 10 [12 points]

We consider the time-dependent PDE

ut = uxx + xux

with initial conditions
u(x, 0) = x2 for 0 < x < 1

and boundary conditions

u(0, t) = t and u(1, t) = 1 for t > 0.

a) Perform a semi-discretisation of the PDE using central differences for the approximations
of the x-derivatives. Use equidistant grid points xi = i∆x with a grid size ∆x = 1/M .

b) We now want to use the trapezoidal rule for ODEs in order to compute a numerical
solution of the system obtained in part a). Set up the linear system that has to be
solved in each step for an arbitrary time step ∆t > 0.
Set up specifically the system for M = 2 and ∆t = 1/2, and compute a numerical
approximation of u(1/2, 1).

Solution:

a) We start with choosing M ∈ N and setting ∆x = 1/M and xi = i∆x for i = 0, . . . ,M . Using
central differences for the approximation of the derivatives on the right hand side, we then
obtain at the interior grid points the equations

∂u

∂t
(xi, t) = u(xi −∆x, t)− 2u(xi, t) + u(xi + ∆x, t)

∆x2

+ xi
u(xi + ∆x, t)− u(xi −∆x, t)

2∆x +O(∆x2).

Approximating Ui(t) ≈ u(xi, t) and ignoring the error term yields

U ′i(t) = Ui−1(t)− 2Ui(t) + Ui+1(t)
∆x2 + xi

Ui+1(t)− Ui−1(t)
2∆x

for i = 1, . . . ,M − 1. In addition, we have the initial condition

Ui(0) = x2
i for i = 1, . . . ,M − 1,

and the boundary values
U0(t) = t and UM (t) = 1.
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b) We now choose a time step ∆t and approximate Uni ≈ u(xi, tn) with tn = n∆t. Then the
trapezoidal rule (or the Crank-Nicolson method) reads as

Un+1
i = Uni + ∆t

2

(
Uni−1 − 2Uni + Uni+1

∆x2 + xi
Uni+1 − Uni−1

2∆x

+
Un+1
i−1 − 2Un+1

i + Un+1
i+1

∆x2 + xi
Un+1
i+1 − U

n+1
i−1

2∆x

)
for i = 1, . . . ,M − 1 and n ≥ 0. In addition, we have

Un0 = tn = n∆t and UnM = 1,

and
U0
i = x2

i for i = 1, . . . ,M − 1.

For the specific case of M = 2 and ∆x = 1/2, the only unknown is Un+1
1 . If we insert the

boundary values Un0 = tn and Un2 = 1, as well as x1 = 1/2, we end up with the equation

Un+1
1 = Un1 + ∆t

2
(
4(tn − 2Un1 + 1) + 1

2(1− tn) + 4(tn+1 − 2Un+1
1 + 1) + 1

2(1− tn+1)
)
.

This can be solved explicitly for Un+1
1 and we obtain

Un+1
1 = 1

1 + 4∆t

(
(1− 4∆t)Un1 + 9∆t

2 + 7∆t
4 (tn + tn+1)

)
For the specific case ∆t = 1/2 and tn = n/2, this results in

Un+1
1 = 1

3
(
−Un1 + 9

4 + 7
8
(
n+ 1

2
))

= 1
3
(
−Un1 + 43

16 + 7n
8
)
.

With the initial value U0
1 = 1/4, we thus obtain that

U1
1 = 1

3
(
−1

4 + 43
16
)

= 13
16

and
U2

1 = 1
3
(
−13

16 + 43
16 + 7

8
)

= 7
8 .


