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Problem 1. (Fixed-point iterations)

Consider the nonlinear equation 𝑥 −
√
sin𝑥 = 0, with 𝑥 ∈ [𝜋/6, 𝜋/2], for which we can

write the fixed-point iteration as

𝑥𝑘+1 =
√︁
sin𝑥𝑘 .

a) Show that the nonlinear equation has a unique solution 𝑟 in the interval [𝜋/6, 𝜋/2],
and that the fixed-point iterations above will converge to 𝑟 for any initial guess
𝑥0 in that interval.

b) Starting from 𝑥0 = 𝜋/2, find an upper bound for the error |𝑥𝑘+1 − 𝑟 | after 𝑘 = 60
iterations.
Important: you are not being asked to perform these iterations!

Solution.

a) We have the fixed-point equation 𝑥 = 𝑔(𝑥), where 𝑔(𝑥) =
√
sin𝑥 . The fixed-

point theorem, which guarantees the existence of the unique root 𝑟 and also the
convergence of the fixed-point iterations, depend on properties of the function
𝑔(𝑥). We need to verify the following conditions:

1) There exists a positive constant 𝐿 < 1 so that |𝑔(𝑥)′| ≤ 𝐿 for all 𝑥 ∈
[𝜋/6, 𝜋/2]

2) The function 𝑔(𝑥) stays within the interval of interest, that is:
𝑔(𝑥) ∈ [𝜋/6, 𝜋/2] for all 𝑥 ∈ [𝜋/6, 𝜋/2].

To check the first one, we must differentiate 𝑔(𝑥):

𝑔(𝑥) = (sin𝑥) 1
2 ⇒ 𝑔′(𝑥) = 1

2
(sin𝑥) 1

2−1(sin𝑥)′ = cos𝑥
2
√
sin𝑥

.

Since cos𝑥 > 0 for all 𝑥 ∈ [𝜋/6, 𝜋/2], we have simply

|𝑔′(𝑥) | = 𝑔′(𝑥) = cos𝑥
2
√
sin𝑥

,

which is a decreasing function for 𝑥 ∈ [𝜋/6, 𝜋/2], since the numerator is decreas-
ing and the denominator is increasing (in the interval considered). Because |𝑔′(𝑥) |
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is decreasing, we know that its maximum value in the interval 𝑥 ∈ [𝜋/6, 𝜋/2] is
simply |𝑔′(𝜋/6) |. Hence:

|𝑔′(𝑥) | ≤ |𝑔′(𝜋/6) | =
√
3/2

2
√︁
1/2

=

√
6
4

< 1 .

The first condition of the theorem is therefore met, with 𝐿 =
√
6/4 ≈ 0.612.

Then, since 𝑔(𝑥) is clearly an increasing function, we know that its minimum
and maximum values within the interval happen for 𝑥 = 𝜋/6 and 𝑥 = 𝜋/2,
respectively:

𝑔(𝜋/6) ≤ 𝑔(𝑥) ≤ 𝑔(𝜋/2) ⇒
√
2/2 ≤ 𝑔(𝑥) ≤ 1 .

Having 𝑔(𝑥) ∈ [
√
2/2, 1] implies, in particular, 𝑔(𝑥) ∈ [𝜋/6, 𝜋/2], since the

interval [𝜋/6, 𝜋/2] contains [
√
2/2, 1]. The last condition is thus fulfilled, which

shows that the fixed-point iterations will convergence to the root 𝑟 , for any initial
guess 𝑥0 ∈ [𝜋/6, 𝜋/2].

b) As a consequence of the fixed-point theorem, we have the a-priori error estimate

|𝑥𝑘+1 − 𝑟 | ≤ 𝐿𝑘+1

1 − 𝐿
|𝑔(𝑥0) − 𝑥0 |.

Therefore, for 𝑘 = 60 we have

|𝑥61 − 𝑟 | ≤ (
√
6/4)60+1

1 −
√
6/4

��√︁sin𝜋/2 − 𝜋/2
�� ≈ 1.5 × 10−13 .

If the student found the wrong constant 𝐿 in item a), used this wrong value in b)
but proceeded correctly, that is OK for item b). It is also OK if the student did the
calculations considering 𝑘 + 1 = 60 instead of 𝑘 = 60.

Problem 2. (Fourier Series)

The function 𝑔(𝑥) = 𝑥2 defined on the interval [0, 𝜋] is to be extended to an odd
function 𝑓 with period 2𝜋 .

Sketch the function 𝑓 on at least 3 periods and compute the coefficients of the real
Fourier series of 𝑓 .

Solution.

The sketch looks like (3 P.)
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−3𝜋 −2𝜋 −𝜋 𝜋 2𝜋 3𝜋

−𝜋2

−𝜋

𝜋

𝜋2

𝑥

𝑔(𝑥)

We can use that the odd extension is an odd function. Hence 𝑎𝑛 = 0 for 𝑛 = 0, 1, 2, . . .. (1
P.)
For the 𝑏𝑛 we use, that integrating over half an interval and multiplying that by 2 yields
the result. Hence We get

𝑏𝑛 =
2
𝜋

∫ 𝜋

0
𝑔(𝑥) sin(𝑛𝑥)d𝑥 =

2
𝜋

∫ 𝜋

0
𝑥2 sin(𝑛𝑥)d𝑥

We apply integration by parts. We have in
∫
𝑓 𝑔′d𝑥 = 𝑓 𝑔−

∫
𝑓 ′𝑔d𝑥 here with 𝑓 (𝑥) = 𝑥2

and 𝑔′(𝑥) = sin(𝑛𝑥) so 𝑓 ′(𝑥) = 2𝑥 and 𝑔(𝑥) = − 1
𝑛
cos(𝑛𝑥) We obtain (2 P.)

𝑏𝑛 =
2
𝜋

(
−𝑥

2

𝑛
cos(𝑛𝑥)

���𝜋
0
+
∫ 𝜋

0

2𝑥
𝑛

cos(𝑛𝑥)d𝑥 .
)

We perform another integration by parts on the second term with 𝑓 (𝑥) = 𝑥 and
𝑔′(𝑥) = 1

𝑛
cos(𝑛𝑥) and hence 𝑓 ′(𝑥) = 1 and 𝑔(𝑥) = 2

𝑛2
sin(𝑛𝑥). We obtain (2 P.)

𝑏𝑛 =
2
𝜋

(
−𝜋

2

𝑛
cos(𝑛𝜋) + 0 + 𝑥

𝑛2
sin(𝑛𝑥)

���𝜋
0
−
∫ 𝜋

0

2
𝑛2

sin(𝑛𝑥)d𝑥
)

We keep the first term, the central term vanishes since sin(𝑛𝜋) = sin(0) = 0 and we
can compute the anti-derivative of the last integral (2 P.)

𝑏𝑛 =
2
𝜋

(
−𝜋

2

𝑛
cos(𝑛𝜋) + 2

𝑛3
cos(𝑛𝑥)

���𝜋
0

)
=

2
𝜋

(
−𝜋

2

𝑛
cos(𝑛𝜋) + 2

𝑛3
cos(𝑛𝜋) − 2

𝑛3

)
=
2𝜋
𝑛
(−1)𝑛+1 + 4

𝜋𝑛3
(−1)𝑛 − 4

𝜋𝑛3

The last simplification is not necessary to get the points for this computation.

Problem 3. (Discrete Fourier Transform)

In this task we consider the discrete Fourier Transform (DFT) for signals of length 𝑛 = 8.
We denote by 𝑥 𝑗 = 2𝜋 𝑗/8, 𝑗 = 0, . . . , 7, corresponding sampling points on [0, 2𝜋).
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a) We consider the function 𝑓 (𝑥) = e3i𝑥 , 𝑥 ∈ [0, 2𝜋), and its sampling values
𝑓 𝑗 = 𝑓 (𝑥 𝑗 ) at the points 𝑥 𝑗 from above.
Compute the discrete Fourier transform f̂ of the vector f = (𝑓0, . . . , 𝑓7).

b) Let ĝ = (0, i, 0, 0, 0, 0, 0,−i) be a result of a DFT. Is the original signal g = F −1
8 ĝ

real-valued?

Solution.

a) We can easily read off the Fourier coefficients 𝑐𝑘 (𝑓 ) =
{
1 if 𝑘 = 3,
0 else.

(1 P.)

Since 𝑓 is bandlimited with 𝑁 = 3 < 4 = 8
2 the Fourier transform of length

𝑛 = 8 is exact, i.e. f̂ = (𝑐0(𝑓 ), 𝑐1(𝑓 ), 𝑐2(𝑓 ), 𝑐3(𝑓 ), 𝑐−4(𝑓 ), 𝑐−3(𝑓 ), 𝑐−2(𝑓 ), 𝑐−1(𝑓 )) =
(0, 0, 0, 1, 0, 0, 0, 0).
Alternatively the same argument can be done mentioning the Aliasing Lemma.(4
P.)

b) Similarly to a) we can associate the coefficients to the Fourier coefficients of a
bandlimited function 𝑔(𝑥) with 𝑐𝑘 (𝑔) = 0 for 𝑘 ≠ ±1 and 𝑐±1(𝑔) = ± 1

8 i, where the
factor 1

8 already anticipates the inverse DFT.
This in turn yields that 𝑔 is (up to a constant scaling) a sine function. To be precise
the vector g is obtained by sampling 𝑔(𝑥) = 1

4 sin(𝑥).
Alternatively one can also compute all 8 terms (consisting of 2 summands each)
by hand and argue, without even computing these exactly, that the exponentials
cancel out w.r.t. their complex components. (5 P.)
The exact values of g are g = 1

4
(
0, 1√

2
, 1, 1√

2
, 0,− 1√

2
,−1,− 1√

2

)
If the students are exact with their Fourier transform and use the unitary one, a
factor of 2√

8
= 1√

2
is also ok. With the physical definition (the 1/8 upfront the DFT

instead of its inverse) even the factor 2.

Problem 4. (Laplace transform)

Using the Laplace transform, solve the third-order ordinary differential equation

𝑦′′′ − 𝑦′ = 1 ,
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with initial conditions 𝑦 (0) = 0, 𝑦′(0) = 0 and 𝑦′′(0) = 1.

Solution.

Applying the Laplace transform to the ODE, we get

𝑠3𝑌 (𝑠) − 𝑦′′(0) − 𝑠𝑌 (𝑠) = 1
𝑠
,

that is,

(𝑠3 − 𝑠)𝑌 (𝑠) = 1 + 1
𝑠
=
𝑠 + 1
𝑠

,

which gives us

𝑌 (𝑠) = 𝑠 + 1
𝑠2(𝑠2 − 1) =

𝑠 + 1
𝑠2(𝑠 − 1) (𝑠 + 1) =

1
𝑠2(𝑠 − 1) .

Decomposition of 𝑌 (𝑠) into partial fractions is done via

𝑌 (𝑠) = 1
𝑠2(𝑠 − 1) =

𝐴

𝑠 − 1
+ 𝐵

𝑠
+ 𝐶

𝑠2
.

To find the coefficients, we have to satisfy

1 = 𝐴𝑠2 + 𝐵𝑠 (𝑠 − 1) +𝐶 (𝑠 − 1) for all 𝑠 .

In particular, setting 𝑠 = 1 gives immediately 𝐴 = 1, while using 𝑠 = 0 results in 𝐶 = −1,
so that 𝐵 = −1 (alternatively, one can solve a 3 × 3 linear system to find 𝐴, 𝐵,𝐶 , which
of course will give the same values). Hence:

𝑌 (𝑠) = 1
𝑠 − 1

− 1
𝑠
− 1
𝑠2

⇒ 𝑦 (𝑡) = e𝑡 − 1 − 𝑡 .

Problem 5. (Convolution)

Using the Laplace transform, solve the integro-differential equation

𝑦′(𝑡) − 5
∫ 𝑡

0
𝑦 (𝑡 − 𝜏) cos𝜏 d𝜏 = 8 sin 𝑡 ,

with the initial condition 𝑦 (0) = 0.
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Solution.

This equation can be written as 𝑦′(𝑡) − 5𝑦 (𝑡) ∗ cos 𝑡 = 8 sin 𝑡 . Applying the Laplace
transform to both sides, we get

[𝑠𝑌 (𝑠) − 𝑦 (0)] − 5𝑌 (𝑠) 𝑠

𝑠2 + 1
=

8
𝑠2 + 1

.

We therefore have[
𝑠

(
1 − 5

𝑠2 + 1

)]
𝑌 (𝑠) = 8

𝑠2 + 1
⇒ 𝑠

[
𝑠2 − 4
𝑠2 + 1

]
𝑌 (𝑠) = 8

𝑠2 + 1
,

that is,

𝑌 (𝑠) = 8
𝑠 (𝑠2 − 4) =

8
𝑠 (𝑠 − 2) (𝑠 + 2) .

Decomposition of 𝑌 (𝑠) into partial fractions is done via

𝑌 (𝑠) = 8
(𝑠 − 2) (𝑠 + 2)𝑠 =

𝐴

𝑠 − 2
+ 𝐵

𝑠 + 2
+ 𝐶

𝑠
.

To find the coefficients, we have to satisfy

8 = 𝐴𝑠 (𝑠 + 2) + 𝐵𝑠 (𝑠 − 2) +𝐶 (𝑠 − 2) (𝑠 + 2) for all 𝑠 .

In particular, setting 𝑠 = 0 gives immediately 𝐶 = −2, while using 𝑠 = ±2 results in
𝐴 = 𝐵 = 1 (alternatively, one can solve a 3 × 3 linear system to find 𝐴, 𝐵,𝐶 , which of
course will give the same values). Hence:

𝑌 (𝑠) = 1
𝑠 − 2

+ 1
𝑠 + 2

− 2
𝑠

⇒ 𝑦 (𝑡) = e2𝑡 + e−2𝑡 − 2 = 2(cosh 2𝑡 − 1) .

Problem 6. (Understanding Code)

Consider the following Python code for a certain numerical method:
1 import numpy as np
2
3 def f(x):
4 return 2-2*x
5
6 def Method(f,a,b,N):
7 x = np.linspace(a,b,N+1)
8 S = 0
9 for i in range(N):
10 S = 0.5*( x[i+1] - x[i] )*( f(x[i+1]) + f(x[i]) )
11
12 return S
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If the method had been implemented correctly, running Method(f,0,1,N) should return
an output equal to 1.0 regardless of the input N. However, there is amistake on one line
of the code that prevents this. In fact, running Method(f,0,1,2), Method(f,0,1,4)
and Method(f,0,1,10), for example, will return 0.25, 0.0625 and 0.01, respectively.

a) Find the mistake and rewrite the incorrect line so as to have the correct imple-
mentation.

b) Once the mistake is fixed, what numerical method will be effectively imple-
mented?

Solution.

a) The composite trapezoidal rule consists in doing

𝑆 =

𝑁∑︁
𝑖=0

𝑓 (𝑥𝑖+1) + 𝑓 (𝑥𝑖)
2

(𝑥𝑖+1 − 𝑥𝑖) ,

but the implementation presented ignores the sum and only delivers the integral
over the last sub-interval (𝑥𝑖, 𝑥𝑖+1). We therefore have to correct line 10 to
S = S + .5*(x[i+1]-x[i])*(f(x[i+1])+f(x[i])) or, even shorter, to
S += .5*(x[i+1]-x[i])*(f(x[i+1])+f(x[i])).

b) The (composite) trapezoidal rule.

Problem 7. (Separation of Variables)

Find all non-trivial solutions of the equation

𝜕𝑢

𝜕𝑡
=
𝜕2𝑢

𝜕𝑥2
+ 𝑢 where 0 < 𝑥 < 𝜋 and 𝑡 > 0

that are of the form 𝑢 (𝑥, 𝑡) = 𝐹 (𝑥)𝐺 (𝑡) and that satisfy the boundary conditions

𝑢 (0, 𝑡) = 0 and 𝑢 (𝜋, 𝑡) = 0 for 𝑡 > 0.

Solution.
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We insert the equation 𝑢 (𝑥, 𝑡) = 𝐹 (𝑥)𝐺 (𝑡) into the PDE and obtain the equation

𝐹 (𝑥) ¤𝐺 (𝑡) = 𝐹 ′′(𝑥)𝐺 (𝑡) + 𝐹 (𝑥)𝐺 (𝑡).

Dividing by 𝐺 (𝑡) and 𝐹 (𝑥) yields the equation

¤𝐺 (𝑡)
𝐺 (𝑡) =

𝐹 ′′(𝑥) + 𝐹 (𝑥)
𝐹 (𝑥) = 𝑘,

where 𝑘 is some constant. From this we obtain the two ODEs

𝐹 ′′ = (𝑘 − 1)𝐹
¤𝐺 = 𝑘𝐺

}
We consider now the possible solutions of the equation for 𝐹 . Thus we have three
possibilities:

𝑘 > 1: Denote 𝑝 =
√
𝑘 − 1 > 0. Then we have the solution

𝐹 (𝑥) = 𝐴𝑒𝑝𝑥 + 𝐵𝑒−𝑝𝑥 .

From the boundary condition 𝐹 (0) = 0 we get the condition 𝐴 = −𝐵, which
implies that 𝐹 (𝑥) = 𝐴(𝑒𝑝𝑥 − 𝑒−𝑝𝑥 ). From the boundary condition 𝐹 (𝜋) = 0, we
now obtain that

𝐴(𝑒𝑝𝜋 − 𝑒−𝑝𝜋 ) = 0,

which is only possible if 𝐴 = 0, as 𝑒𝑝𝜋 > 1 and 𝑒−𝑝𝜋 < 1. Thus we only end up
with the trivial solution.

𝑘 = 1: Here we have the ODE 𝐹 ′′ = 0, which has the general solution

𝐹 (𝑥) = 𝐴 + 𝐵𝑥.

From the boundary condition 𝐹 (0) = 0 we get that 𝐴 = 0 and thus 𝐹 (𝑥) = 𝐵𝑥 .
Now the condition 𝐹 (𝜋) = 0 implies that also 𝐵 = 0. Thus we obtain, again, only
trivial solutions.

𝑘 < 1: Denote 𝑝 =
√
1 − 𝑘 > 0. Then we have the solution

𝐹 (𝑥) = 𝐴 cos(𝑝𝑥) + 𝐵 sin(𝑝𝑥).

From the boundary condition 𝐹 (0) = 0 we obtain that 𝐴 = 0 and thus 𝐹 (𝑥) =
𝐵 sin(𝑝𝑥). Now the boundary condition 𝐹 (𝜋) = 0 implies that either 𝐵 = 0 (which
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gives the trivial solution) or sin(𝑝𝜋) = 0. The latter is satisfied if 𝑝 = 𝑛 for some
𝑛 = 1, 2, . . .
We thus obtain the non-trivial solutions

𝐹 (𝑥) = 𝐵 sin(𝑛𝑥) for 𝑛 = 1, 2, . . .

Since
𝑘 = 1 − 𝑝2 = 1 − 𝑛2,

the corresponding solution for 𝐺 is

𝐺 (𝑡) = 𝐶𝑒𝑘𝑡 = 𝐶𝑒 (1−𝑛
2)𝑡 .

In total, we have the non-trivial solutions

𝑢𝑛 (𝑥, 𝑡) = 𝐶𝑒 (1−𝑛
2)𝑡 sin(𝑛𝑥) for 𝑛 = 1, 2, . . .

Problem 8. (Solution to a PDE)

The equation
𝜕2𝑢

𝜕𝑡2
+ 7𝑢 =

𝜕2𝑢

𝜕𝑥2
for 0 < 𝑥 < 𝜋 and 𝑡 > 0

with boundary conditions

𝑢 (0, 𝑡) = 0 and 𝑢 (𝜋, 𝑡) = 0 for 𝑡 > 0

has the general solution

𝑢 (𝑥, 𝑡) =
∞∑︁
𝑛=1

sin(𝑛𝑥)
(
𝐴𝑛 cos

(
𝑡
√
7 + 𝑛2

)
+ 𝐵𝑛 sin

(
𝑡
√
7 + 𝑛2

) )
.

(You don’t have to show this!)

Use this information to find the solution that additionally satisfies the initial conditions

𝑢 (𝑥, 0) = sin(𝑥) and
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 2 sin(3𝑥) for 0 < 𝑥 < 𝜋.

Solution.
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Inserting 𝑡 = 0 into the general solution, we obtain that

𝑢 (𝑥, 0) =
∞∑︁
𝑛=1

𝐴𝑛 sin(𝑛𝑥).

Now the initial condition states that this should be equal to

𝑢 (𝑥, 0) = sin(𝑥).

By comparing the coefficients in front of the sine functions, we see that

𝐴1 = 1, and 𝐴𝑛 = 0 else.

Next we differentiate the general solution with respect to 𝑡 , which gives

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) =

∞∑︁
𝑛=1

sin(𝑛𝑥)
(
−𝐴𝑛

√
7 + 𝑛2 sin

(
𝑡
√
7 + 𝑛2

)
+ 𝐵𝑛

√
7 + 𝑛2 cos

(
𝑡
√
7 + 𝑛2

) )
In particular, we obtain for 𝑡 = 0 that

𝜕𝑢

𝜕𝑡
(𝑥, 0) =

∞∑︁
𝑛=1

𝐵𝑛
√
7 + 𝑛2 sin(𝑛𝑥).

The second initial condition states that this should be equal to

𝜕𝑢

𝜕𝑡
(𝑥, 0) = 2 sin(3𝑥).

Again, we have to compare the coefficients in front of the sine functions. For 𝑛 = 3 we
obtain the equation

𝐵3
√
7 + 32 = 2,

which simplifies to
𝐵3 =

1
2
,

and all other coefficients are equal to 0.

Thus the solution with these initial conditions reads

𝑢 (𝑥, 𝑡) = sin(𝑥) cos(
√
8𝑡) + 1

2
sin(3𝑥) sin(4𝑡).
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Problem 9. (Numerical Solution of PDEs)

Consider the heat equation

𝑢𝑡 (𝑥, 𝑡) =
1
4
𝑢𝑥𝑥 (𝑥, 𝑡) for 0 ≤ 𝑥 ≤ 1 and 𝑡 ≥ 0,

with boundary conditions

𝑢 (0, 𝑡) = cos(𝑡), 𝑢 (1, 𝑡) = 0, for 𝑡 ≥ 0,

and initial condition
𝑢 (𝑥, 0) = 1 − 𝑥 for 0 ≤ 𝑥 ≤ 1.

Set up an explicit finite difference scheme for this equation. Use the step length ℎ = 0.25
in the spatial direction, and the step length 𝑘 = 0.1 in the temporal direction.

Use your finite difference scheme in order to find an approximation to 𝑢 (0.25, 0.2).

Solution.

• Discretisation of the domain and equation:

We start by defining the grid points𝑥𝑖 = 𝑖ℎ = 0.25𝑖 , 𝑖 = 0, . . . , 4, and 𝑡𝑛 = 𝑛𝑘 = 0.1𝑛,
𝑛 = 0, 1, 2, . . .
Next we use that

𝑢𝑡 (𝑥𝑖, 𝑡𝑛) =
𝑢 (𝑥𝑖, 𝑡𝑛+1) − 𝑢 (𝑥𝑖, 𝑡𝑛)

𝑘
+𝑂 (𝑘),

𝑢𝑥𝑥 (𝑥𝑖, 𝑡𝑛) =
𝑢 (𝑥𝑖+1, 𝑡𝑛) − 2𝑢 (𝑥𝑖, 𝑡𝑛) + 𝑢 (𝑥𝑖−1, 𝑡𝑛)

ℎ2
+𝑂 (ℎ2).

We now ignore the error terms, approximate 𝑈 𝑛
𝑖 ≈ 𝑢 (𝑥𝑖, 𝑡𝑛), and insert the finite

difference approximations in the PDE. Then we obtain the equation

𝑈 𝑛+1
𝑖 −𝑈 𝑛

𝑖

𝑘
=

1
4
𝑈 𝑛
𝑖−1 − 2𝑈 𝑛

𝑖 +𝑈 𝑛
𝑖+1

ℎ2
.

Solving this for𝑈 𝑛+1
𝑖 , we obtain the expressions

𝑈 𝑛+1
𝑖 = 𝑈 𝑛

𝑖 + 𝑘

4ℎ2
(
𝑈 𝑛
𝑖−1 − 2𝑈 𝑛

𝑖 +𝑈 𝑛
𝑖+1
)
= 0.2𝑈 𝑛

𝑖 + 0.4(𝑈 𝑛
𝑖−1 +𝑈 𝑛

𝑖+1) (1)

for 𝑖 = 1, 2, 3, and 𝑛 = 1, 2, 3, . . ., where we have used that 𝑘/4ℎ2 = 0.1/0.25 = 0.4.
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• Boundary conditions:

For 𝑖 = 1 and 𝑖 = 3, the expressions above depend on 𝑈 𝑛
0 and 𝑈 𝑛

4 , which we need
to define using the boundary conditions 𝑢 (0, 𝑡) = cos(𝑡) and 𝑢 (1, 𝑡) = 0. From
these we obtain that

𝑈 𝑛
0 = cos(𝑡𝑛) = cos(0.1𝑛) and 𝑈 𝑛

4 = 0,

which we use in (1)

• Initial conditions:

For 𝑛 = 0 we make use of the initial condition 𝑢 (𝑥, 0) = 1 − 𝑥 , which yields

𝑈 0
𝑖 = 1 − 𝑥𝑖 = 1 − 0.25𝑖 for 𝑖 = 0, . . . , 4.

• Complete algorithm:

Summarising everything above, we obtain the following method:
Initialise: Define

𝑈 0
𝑖 = 1 − 0.25𝑖 for 𝑖 = 1, 2, 3.

Iteration: For 𝑛 = 1, 2, . . . define

𝑈 𝑛
0 = cos(0.1𝑛) and 𝑈 𝑛

4 = 0,

and compute

𝑈 𝑛+1
𝑖 = 0.2𝑈 𝑛

𝑖 + 0.4(𝑈 𝑛
𝑖−1 +𝑈 𝑛

𝑖+1) for 𝑖 = 1, 2, 3.

Finally, we use this method for approximating 𝑢 (0.25, 0.2). We are using a step length
ℎ = 0.25 in spatial direction and a step length 𝑘 = 0.1 in temporal direction, and thus
(0.25, 0.2) = (ℎ, 2𝑘) = (𝑥1, 𝑡2). That is, we have the approximation 𝑢 (0.25, 0.2) ≈ 𝑈 2

1 ,
which means that we have to compute 𝑈 2

1 with the algorithm defined above. We
initialise

𝑈 0
0 = 1, 𝑈 0

1 = 0.75, 𝑈 0
2 = 0.5, 𝑈 0

3 = 0.25, 𝑈 0
4 = 0.

Next we compute the values 𝑈 1
𝑖 for 𝑖 = 1, 2, 3 (we actually do not need 𝑈 1

3 for the
computation of𝑈 2

1 ):
𝑈 1
1 = 0.2𝑈 0

1 + 0.4(𝑈 0
0 +𝑈 0

2 ) = 0.75,
𝑈 1
2 = 0.2𝑈 0

2 + 0.4(𝑈 0
1 +𝑈 0

3 ) = 0.5,
𝑈 1
3 = 0.2𝑈 0

3 + 0.4(𝑈 0
2 +𝑈 0

4 ) = 0.25.
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Finally, we set𝑈 1
0 = cos(0.1) and compute

𝑈 2
1 = 0.2𝑈 1

1 + 0.4(𝑈 1
0 +𝑈 1

2) = 0.15 + 0.4 cos(0.1) + 0.2 ≈ 0.748.

Thus
𝑢 (0.25, 0.2) ≈ 𝑈 2

1 ≈ 0.748.
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Problem 10. (Numerical Methods for ODEs)

a) Rewrite the second order differential equation

𝑢′′ + 8𝑢′ + 7𝑢 = 0, 𝑢 (0) = 1, 𝑢′(0) = 1/2
as a system of first order differential equations.

b) Apply Euler’s method to the system, and perform one step with step size ℎ = 0.1.

c) What is the maximum step size ℎ for which we can get a stable solution when
Euler’s method is applied to the system of ODEs from point a).

Solution.

a) Let 𝑦1 = 𝑢 and 𝑦2 = 𝑢′. The system becomes

𝑦′1 = 𝑦2, 𝑦1(0) = 1,
𝑦′2 = −7𝑦1 − 8𝑦2, 𝑦2(0) = 1/2.

b) Euler’s method is given by

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓 (𝑡𝑛, 𝑦𝑛),
which in our case becomes

𝑦1,1 = 1 + 0.1 · 0.5 = 1.05,
𝑦2,1 = 0.5 + 0.1 · (−7 · 1.0 − 8 · 0.5) = −0.6.

c) This is an issue of linear stability analysis.
The systems of equations can be written as

𝑦′ = 𝐴𝑦, with 𝐴 =

[
0 1
−7 −8

]
.

The matrix 𝐴 has eigenvalues −1 and −7.
If the method is applied to the linear scalar test equation 𝑦′ = 𝜆𝑦 , where 𝜆

represents one of the eigenvalues of 𝐴, we get

𝑦𝑛+1 = 𝑅(𝑧)𝑦𝑛, 𝑅(𝑧) = 1 + 𝑧 with 𝑧 = 𝜆ℎ.

The numerical solution is stable if the step size ℎ is chosen such that |𝑅(𝑧) | ≤ 1,
that is −2 ≤ 𝑧 ≤ 0. For 𝜆 = −1 this means ℎ ≤ 2, for 𝜆 = −7, it gives ℎ ≤ 2/7 =
0.2857 · · · . Thus, stepsizes has to be chosen in the interval 0 < ℎ ≤ 2/7 for the
solution to be stable.


