Løsningsforslag eksamen 2003.

Problem 1 2003: Probably a misprint $g=b$. Applying $\log _{b}$ to these two congruences one obtain the linear system of congruences:

$$
\begin{gathered}
2 x+87 \equiv 53+5 y+35(\bmod 106) \\
3 x+18 \equiv 7 y+23(\bmod 106)
\end{gathered}
$$

which gives that $x=\log _{b} a=18$ and $y=\log _{b} c=7$.

Problem 2 2003: a) $p-1=2 q$ so 5 has order $2, q$ or $2 q .5$ does not have order two since $5^{2}=25 \not \equiv 1(\bmod p)$. If $5^{q} \equiv 1(\bmod p)$, then 5^{q} is a quadratic residue modulo p. So let (a / b) denotes the Legendre or Jacobi symbol and the rules in section 5.4.2 can be applied. $\left(5^{q} / p\right)=(5 / p)^{q}=(5 / p)=(p / 5)=(2 / 5)=-1$. From this we get that $5^{q} \not \equiv 1(\bmod p)$ and therefore 5 is a primitive element modulo p.
b) The same applied to 11 gives that $\left(11^{q} / p\right)=(11 / p)^{q}=(11 / p)=-(p / 11)=$ $-(10 / 11)=-(2 / 11)(5 / 11)=(5 / 11)=(11 / 5)=(1 / 5)=1$. Hence $11^{q} \equiv 1(\bmod p)$ and 11 is not a primitive element modulo p.
c) There are $\phi(p-1)=q-1$ generators, and a total of $p-3$ elements to choose from so the probability that a random chosen number in the given range is a generator is $(q-1) /(p-3)$ which is $1 / 2$.

Problem 3 2003: a) The order of an element h in a group G is the number of elements in the subgroup of G generated by h, or what is the same, the smallest natural number n such that $h^{n}=e$ in the group, where e denotes the identity and the group is written as a multiplicative group.
b) We think of the order of 2 in the the multiplicative group \mathbb{Z}_{n}^{*} of units in \mathbb{Z}_{n}.
c) The order of 2 is a divisor of $\phi(n)=2^{16}\left(2^{127}-2\right)=2^{17}\left(2^{126}-1\right)$. $\mathbb{Z}_{n}^{*} \simeq$ $\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}$. Now $2^{16} \equiv-1(\bmod p)$ so $2^{32} \equiv 1(\bmod p)$, and $2^{127} \equiv 1(\bmod q)$, and since $\operatorname{gcd}(32,127)=1$ the order of 2 is $32 \cdot 127=4052$.

Problem 4 2002: a) $\mathbb{Z}_{n}^{*} \simeq \mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*} \simeq Z_{3306} \times Z_{4408} \simeq \mathbb{Z}_{6} \times \mathbb{Z}_{551} \times \mathbb{Z}_{8} \times \mathbb{Z}_{551}$, Hence knowing these isomorphisms and the residues modulo 24 and 551 determines a d which will work. So I trust the expert.
b) $d=11131$

Problem 5 2003: a) f has no linear term, and not divisible with any of the listed polynomials, hence f is irreducible.
b) $g=\left(x^{2}+x+1\right)^{3}$ so g is reducible.

Problem 6 2003: $p=f$. Since $\operatorname{gcd}\left(f, x^{21}-1\right) \neq 1$, it follows that f divides $x^{21}-1$, and x has order 21 in the field.

The recurrence relation is $c_{n}=c_{n-2}+c_{n-4}+c_{n-5}+c_{n-6}$. Since this recurrence relation has period 21, we get that $c_{2}=c_{65}=0 c_{3}=c_{66}=1, c_{0}=c_{84}=1$, $c_{1}=c_{85}=0, c_{4}=c_{109}=1$ and $c_{5}=c_{110}=1$ (There is a misprint in the last pair.)

