EKSAMEN I TMA4160 KRYPTOGRAFI
 Torsdag 4. desember 2003
 Kl. 9-14

Sensur: 4. januar 2004
Hjelpemidler: A
Write carefully, mark the answers, refer to theorems you use, show the logical steps of you solution. Each task is evaluated as a whole, there can be subquestions marked by a, b, c, but they are not separate tasks.

Oppgave 1

It is known that g is a generator for \mathbb{Z}_{p}^{*} where $p=107$ is prime. Given that

$$
\left\{\begin{array}{l}
a^{2} b^{87}+b^{35} c^{5} \equiv 0 \\
a^{3} b^{18}-b^{23} c^{7} \equiv 0
\end{array} \quad(\bmod 107)\right.
$$

find discrete logarithms $\log _{b} a, \log _{b} c$.

Oppgave 2

It is known that $p=11330087$, is a Sophie Germain prime (or $p=2 q+1$, where q is prime).
a) Determine if $g_{1}=5$ is a generator for \mathbb{Z}_{p}^{*}.
b) Determine if $g_{2}=11$ is a generator for \mathbb{Z}_{p}^{*}.

Explain your reasons.
c) Evaluate probability that a randomly chosen $a, 1<a<(p-1)$, is a generator for \mathbb{Z}_{p}^{*} (up to an error magnitude 0.001).

Oppgave 3

Let $n=p \cdot q$, where $p=2^{16}+1, q=2^{127}-1$ are known to be prime.
a) Write down the definition of the order of an element h of a group G.
b) Explain what is the group we are to think of, when one speaks about " the order of 2 $\bmod n "$.
c) Find this "order of $2 \bmod n$ " for n given above. Explain your reasoning.

Oppgave 4

The RSA encryption/decryption $n=p q, y=E(x)=x^{e} \underline{\bmod } n, z=D(y)=y^{d} \underline{\bmod } n$, was used with $p=3307, q=4409, e=139$. An "expert" said that to find d it is sufficient to solve the system:

$$
\left\{\begin{array}{l}
d \equiv-5(\bmod 24) \\
d \equiv 111(\bmod 551) .
\end{array}\right.
$$

a) What is your opinion, is the statement of the "expert" correct or wrong?

Provide arguments to prove your position.
b) Find d, chose the value as small as possible.

Oppgave 5

You can use the fact that over \mathbb{Z}_{2} irreducible polynomials of degree 2 and 3 are: $x^{2}+x+1, x^{3}+x+1, x^{3}+x^{2}+1$.
a) Determine if $f(x)=x^{6}+x^{4}+x^{2}+x+1$ is irreducible over \mathbb{Z}_{2} or not.
b) Determine if $g(x)=x^{6}+x^{5}+x^{3}+x+1$ is irreducible over \mathbb{Z}_{2} or not.

Oppgave 6

An encryption system, stream cipher, was made with the encryption rule $y_{i}=x_{i}+c_{i}$, where the plaintext $\bar{x}=\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{2}^{n}$, and $\tau=\left(c_{0}, c_{1}, \ldots, c_{N}\right) \in \mathbb{Z}_{2}^{n}$ is the key sequence generated by LFSR with the connection polynomial $p(x)$, and this polynomial $p(x)$ is equal to the irreducible one among the polynomials $f(x), g(x)$ of Task 5 above.
It can be calculated that $\operatorname{gcd}\left(f(x), x^{21}-1\right) \neq 1, \operatorname{gcd}\left(g(x), x^{21}-1\right) \neq 1$.
The following plaitext/ciphertext pairs are known:

$$
\begin{array}{ll}
\left(x_{65}, y_{65}\right)=(0,0), & \left(x_{84}, y_{84}\right)=(1,0), \\
\left(x_{66}, y_{66}\right)=(0,1), & \left(x_{109}, y_{109}\right)=(0,1) \\
\left.x_{85}, y_{85}\right)=(1,1), & \left(x_{110}, y_{110}\right)=(10,0)
\end{array}
$$

Break the system: write the recurrence relation and the initial part c_{0}, \ldots, c_{5} of the key sequence.

