Løsningsforslag eksamen 2004.
Problem 1 2004: $\left(x^{5}+x^{3}+x^{2}+1\right)^{-1}=x^{6}+x^{2}$ and the decryption function will be $d(t)=\left(x^{6}+x^{2}\right) \cdot t+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x$

Problem 2 2004: $x \equiv 2^{356} \equiv 2^{70 \cdot 5+6} \equiv 64(\bmod 71) 2 x \equiv 3^{318483} \equiv 3^{30 \cdot 10616+3} \equiv$ $3^{3} \equiv 27(\bmod 31)$, which gives $x \equiv 29(\bmod 31)$, and one finds that $x=277$.

Problem 3 2004: Take the square of the first equation one obtains $4 a^{6} b^{4} \equiv g^{4}$. Divide this by the second equation one obtains $a^{4} b^{-1} \equiv g^{-2}$. Take the last equation and divide by the product of the first two equations, gives the equation $a^{3} b \equiv g^{-5}$. Multiply the two equation obtained and obtain $a^{7} \equiv g^{-7}$. If $\operatorname{gcd}(p-1,7)=1$, then $\log _{g} a=-1$ and $\log _{g} b=-2$, otherwise one just have the congruences $7 \log _{g} a \equiv$ $-7(\bmod p-1)$ and $7 \log _{g} b \equiv-14(\bmod p-1)$

Problem 4 2004: $27=3^{3}$ and $81=3^{4},\left(\alpha^{k_{1}}\right)^{4}=\left(\alpha^{k_{2}}\right)^{3}$ so $4 \cdot k_{1}=3 \cdot k_{2}$. $56^{4}=m^{4} \beta^{4 k_{1}}$ and $19^{3}=m^{3} \beta^{3 k_{2}}$ dividing the first equation by the second one one get that $m=56^{4} \cdot 19^{-3}$ everything calculated modulo 3001, which becomes 2490 .

Problem 5 2004: The straight line has equation $y=9 x$, so one find the third point on that line and the curve by factoring $x^{3}-10 x^{2}+9 x=x(x-1)(x-9)$, which gives the point $(9,10)$. Hence, $C=(9,61)$

Problem 6 2004: $n=3001 \cdot 7001$ and hence $\phi n=3000 \cdot 7000=21000000$ We can solve $x \equiv 433^{-1}(\bmod 3000)$ and $x \equiv 433^{-1}(\bmod 7000)$ which is the same as solving the system $x \equiv 433^{-1}$ modulo each of the numbers $3,7,8$ and 125 . This gives $x \equiv 1(\bmod 3), x \equiv 6(\bmod 7), x \equiv 1(\bmod 8)$ and $x \equiv 97(\bmod 125)$. This together gives $x=97$.

Problem 7 2004: The function $f(x)=x^{3}$ from \mathbb{Z}_{n}^{*} to \mathbb{Z}_{n}^{*} has a kernel isomorphic to \mathbb{Z}_{3} and hence the image has size $\phi(n) / 3$ and are isomorphic to $\mathbb{Z}_{7} \times \mathbb{Z}_{8} \times \mathbb{Z}_{125} \times$ $\mathbb{Z}_{8} \times Z_{125}$. Hence the probability $p_{0}=2 / 3, p_{1}=0, p_{2}=0 p_{3}=1 / 3$ while all the other probabilities are 0 .

Problem 8 2004: One has that that the order of an element is either $2, q$ or $2 q$. To check that the order is not 2 is fast, $a \neq \pm 1$. And a has order q if and only if a is a quadratic residue modulo p, which can be checked with the laws of quadratic residues. Here (a / b) denotes the Legendre or Jacobi symbol and the rules in section 5.4.2 are applied. $(213 / 10007)=(10007 / 213)=(209 / 213)=(213 / 209)=$ $(4 / 209)=1$ so 213 has order $q .(87 / 10007)=-(10007 / 87)=-(2 / 87)=-1$ so 87 has order $2 q$.

