TMA4160 - Kryptografi

English
Saturday December 2, 2006
Time: 09:00-13:00
Grades: January 2, 2007
Permitted aids: All printed and written. All types of calculators.

Oppgave 1

a) Find all solutions of

$$
\begin{array}{ll}
x \equiv 1 & (\bmod 21) \\
x \equiv 8 & (\bmod 35)
\end{array}
$$

For which values of a does the following set have a solution?

$$
\begin{aligned}
x \equiv 1 & (\bmod 21) \\
x \equiv a & (\bmod 35)
\end{aligned}
$$

Oppgave 2 Given $\beta^{10} \alpha^{4} \equiv \beta^{3} \alpha^{61}(\bmod 167)$, where α is a generator for \mathbb{Z}_{167}^{*}. Find $\log _{\alpha} \beta$.

Oppgave 3 Each student at NTNU will receive their own pair of keys for RSA.

- Public key: n and e, where $n=p q$ with p og q prime, and e is such that $\operatorname{gcd}(e, \phi(n))=1$.
- Private key: d.

Four methods have been proposed to generate keys efficiently. Explain why none of the methods should be used.
a) All use the same n, where p and q are kept secret, and all have different e.
b) Everyone share the same p, but have different values of q.
c) For each user, let p be arbitrary, and let $q=\operatorname{nextprime}\left(\operatorname{stn} * 2^{500}\right)$, where stn is a student number consisting of six digits. We assume that everyone can keep their student number hidden to others. Here nextprime (x) is an algorithm that returns the smallest prime $\geq x$.
d) For each user, let p be arbitrary, and let $q=\operatorname{nextprime}(p+1)$.

Oppgave 4 The following is a suggestion for an identification protocol. Alice has a public key $n=p q$, where p and q are secret (large primes). Alice authenticates to Bob by sending Bob a number x which is a quadratic residue modulo n, and Alice returns y such that $y^{2}=x$ $(\bmod n) .($ We can assume that $p \equiv 3 \equiv q(\bmod 4)$, such that Alice can compute square roots).

Suppose that you are Bob, explain how you can use this protocol to find Alice's secret p and q.

Oppgave 5 Consider the elliptic curve E given by

$$
y^{2}=x^{3}-7 x+6 \text { over } \mathbb{Z}_{107}
$$

a) Find $(-3,0) \oplus(-1,36)$ (the sum on the elliptic curve).
b) Show that E has an element of order ≥ 40.
c) Show that E is not a cyclic group.

