Contact during the exam:
Kristian Gjøsteen 73550242

EXAM IN TMA4160 CRYPTOGRAPHY

English
Wednesday, December 16, 2009, with corrections.
Time: 0900-1300
Any printed or hand-written material is allowed during the exam.
An approved, simple calculator is allowed.
All problems have equal weight. Show your work.

Problem $1 \quad$ We shall work in the group \mathbb{F}_{83}^{*}. Let $g=2$.
a) Find the order of g.
b) Compute $\log _{g} 17$ using the Baby-step Giant-step method (Shanks' algorithm).
c) Given

$$
\begin{aligned}
g^{35} & =5 \cdot 7, \\
g^{80} & =3 \cdot 7, \text { and } \\
g^{17} & =3 \cdot 5,
\end{aligned}
$$

find $\log _{g} 3, \log _{g} 5$ and $\log _{g} 7$.
d) Use the results from the previous task and the fact that $17 g^{14}=63$ to find $\log _{g} 17$.

Problem 2 Let $E: y^{2}=x^{3}+x+1$ be an elliptic curve over \mathbb{F}_{83}.
a) Show that $P=(29,10)$ is a point on the curve and compute $2 P$ and $3 P$. What is the order of P ?
b) The point $Q=(73,53)$ has order 9 . Use this together with the result from the previous task to determine the number of points on the curve. Is the group $E\left(\mathbb{F}_{83}\right)$ cyclic?

Problem 3 Let n be the product of two primes p and q, where $(p-1) / 2$ and $(q-1) / 2$ are also prime and odd.
a) Show that the Jacobi symbol $\left(\frac{-1}{n}\right)$ equals 1 , but that -1 is not a square \mathbb{Z}_{n}^{*}.
b) Let $J=\left\{x \in \mathbb{Z}_{n}^{*} \left\lvert\,\left(\frac{x}{n}\right)=1\right.\right\}$ and $Q=\left\{x^{2} \mid x \in \mathbb{Z}_{n}^{*}\right\}$. Show that J is a subgroup of \mathbb{Z}_{n}^{*}, that Q is a non-trivial subgroup of J, and that the factor group J / Q has order 2.
c) Show that for any $x \in J \backslash Q$ we have that $\left(\frac{x}{p}\right)=\left(\frac{x}{q}\right)=-1$.

Based on these results, we can construct a public key cryptosystem with message space $\{-1,1\}$ as follows:

- Key generation is to find two primes p and q such that $(p-1) / 2$ and $(q-1) / 2$ are also prime. The encryption key is $n=p q$.
- To encrypt $m \in\{-1,1\}$ with the encryption key n, choose a random $r \in \mathbb{Z}_{n}^{*}$ and compute the ciphertext as $c=r^{2} m$.
d) Suggest a decryption algorithm (and explain what the decryption key is) and show that it works.

