Norwegian University of Science and Technology Department of Mathematical Sciences

Page 1 of 2

Contact during the exam: Kristian Gjøsteen 73550242

EXAM IN TMA4160 CRYPTOGRAPHY

English Wednesday, December 16, 2009, with corrections. Time: 0900-1300 Any printed or hand-written material is allowed during the exam. An approved, simple calculator is allowed.

All problems have equal weight. Show your work.

Problem 1 We shall work in the group \mathbb{F}_{83}^* . Let g = 2.

- a) Find the order of g.
- **b)** Compute $\log_q 17$ using the Baby-step Giant-step method (Shanks' algorithm).
- c) Given

$$g^{35} = 5 \cdot 7,$$

 $g^{80} = 3 \cdot 7,$ and
 $g^{17} = 3 \cdot 5,$

find $\log_g 3$, $\log_g 5$ and $\log_g 7$.

d) Use the results from the previous task and the fact that $17g^{14} = 63$ to find $\log_q 17$.

Problem 2 Let $E: y^2 = x^3 + x + 1$ be an elliptic curve over \mathbb{F}_{83} .

- a) Show that P = (29, 10) is a point on the curve and compute 2P and 3P. What is the order of P?
- b) The point Q = (73, 53) has order 9. Use this together with the result from the previous task to determine the number of points on the curve. Is the group $E(\mathbb{F}_{83})$ cyclic?

Problem 3 Let *n* be the product of two primes *p* and *q*, where (p-1)/2 and (q-1)/2 are also prime and odd.

- a) Show that the Jacobi symbol $\left(\frac{-1}{n}\right)$ equals 1, but that -1 is not a square \mathbb{Z}_n^* .
- **b)** Let $J = \{x \in \mathbb{Z}_n^* \mid (\frac{x}{n}) = 1\}$ and $Q = \{x^2 \mid x \in \mathbb{Z}_n^*\}$. Show that J is a subgroup of \mathbb{Z}_n^* , that Q is a non-trivial subgroup of J, and that the factor group J/Q has order 2.
- c) Show that for any $x \in J \setminus Q$ we have that $\left(\frac{x}{p}\right) = \left(\frac{x}{q}\right) = -1$.

Based on these results, we can construct a public key cryptosystem with message space $\{-1, 1\}$ as follows:

- Key generation is to find two primes p and q such that (p-1)/2 and (q-1)/2 are also prime. The encryption key is n = pq.
- To encrypt $m \in \{-1, 1\}$ with the encryption key n, choose a random $r \in \mathbb{Z}_n^*$ and compute the ciphertext as $c = r^2 m$.
- d) Suggest a decryption algorithm (and explain what the decryption key is) and show that it works.