Contact during the exam:
Kristian Gjøsteen 73550242

EXAM IN TMA4160 CRYPTOGRAPHY

English
Saturday, December 18, 2010
Time: 0900-1300
Any printed or hand-written material is allowed during the exam.
An approved, simple calculator is allowed.

All problems have equal weight. Show your work.

Problem $1 \quad$ Let \mathbb{F}_{29} be the field with 29 elements, the elements represented by $0,1,2, \ldots, 28$. Let $\mathcal{A}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{Z}\}$ be the letters of the alphabet. We map \mathcal{A} into \mathbb{F}_{29} in the obvious way, $\mathrm{A} \mapsto 0, \mathrm{~B} \mapsto 1, \ldots, \mathrm{Z} \mapsto 25$.

Strings of letters become strings of field elements in the obvious fashion. We map strings of field elements to polynomials in $\mathbb{F}_{29}[X]$ as follows:

$$
\left(m_{1}, m_{2}, \ldots, m_{l}\right) \longmapsto m_{1} X+m_{2} X^{2}+\cdots+m_{l} X^{l}
$$

We have now defined how a string m of letters maps to a polynomial $m(X)$, e.g. CAR maps to the polynomial $2 X+0 X^{2}+17 X^{3}$.

Next, define the message authentication code

$$
f\left(k_{1}, k_{2}, m\right)=m\left(k_{1}\right)+k_{2},
$$

where $k_{1}, k_{2} \in \mathbb{F}_{29}, m$ is a string of letters and $m\left(k_{1}\right)$ denotes the evaluation of the polynomial $m(X)$ in k_{1}.
a) You share the key $k_{1}=3, k_{2}=21$ with Alice. You receive two messages (HELP, 24) and (OK, 24), both claiming to be from Alice. Which message is from Alice?
b) You know that Carol shares a secret key with Bob. You intercept the two messages (KELP, 7) and (HELP, 21) from Carol before they reach Bob. Compute a field element t such that Bob will believe (OK, t) came from Carol.

Problem 2

a) Use the Soloway-Strassen algorithm with random choice 650 to decide if 1829 is prime or composite.
b) Use Pollard's ρ method with the polynomial $f(x)=x^{2}+1$ to factor 1829, using 2 as a starting point.
c) Use the following relations to factor 1829:

$$
\begin{aligned}
807^{2} & \equiv 5^{3} \quad(\bmod 1829) \\
1656^{2} & \equiv 5 \cdot 7 \cdot 19 \quad(\bmod 1829) \\
1150^{2} & \equiv 7 \cdot 19 \quad(\bmod 1829)
\end{aligned}
$$

Problem 3 Let p and q be primes such that $\operatorname{gcd}((p-1)(q-1), p q)=1$. Set $n=p q$. The group $\mathbb{Z}_{n^{i}}^{*}$ has order $(p-1)(q-1) n^{i-1}$. Denote by $a+\left\langle n^{i}\right\rangle$ the equivalence class in $\mathbb{Z}_{n^{i}}=\mathbb{Z} /\left\langle n^{i}\right\rangle$ containing a.
a) Let $g=1+n+\left\langle n^{2}\right\rangle \in \mathbb{Z}_{n^{2}}^{*}$. Prove that for any non-negative integer m,

$$
g^{m}=1+m n+\left\langle n^{2}\right\rangle,
$$

and that g has order n.

$$
\text { Hint: }(a+b)^{c}=\sum_{i=0}^{c}\binom{c}{i} a^{i} b^{c-i} .
$$

Let $H=\left\{x^{n} \mid x \in \mathbb{Z}_{n^{2}}^{*}\right\}$. Let $\phi: \mathbb{Z}_{n}^{*} \rightarrow \mathbb{Z}_{n^{2}}^{*}$ be the map given by

$$
a+\langle n\rangle \mapsto a^{n}+\left\langle n^{2}\right\rangle .
$$

b) Prove that H is a subgroup of $\mathbb{Z}_{n^{2}}^{*}$ and that H is the image of ϕ.
c) Prove that ϕ is a group isomorphism from \mathbb{Z}_{n}^{*} to H.

Let u be any inverse of n modulo $(p-1)(q-1)$.
d) Prove that for any $x \in H$ and $m \in \mathbb{Z}$,

$$
\left(x g^{m}\right)^{u n}=x .
$$

We can define a public key cryptosystem as follows:

- Key generation is to find an RSA modulus as above. The encryption key is n, the decryption key is (n, u).
- We encrypt $m \in\{0,1, \ldots, n-1\}$ by choosing a random element $r \in \mathbb{Z}_{n}^{*}$, then computing the ciphertext as

$$
c=\phi(r) g^{m} .
$$

e) Explain how to decrypt ciphertexts using u and n.

