
TMA4160 Cryptography - Exam 2011 Sample Solutions

Problem 1. a) Let p = 138547. For Bob’s exponent to be invertible it has to be coprime to p− 1 and
thus odd (this holds for any prime p). As a result, 26 is not suitable. Since 5 does not divide p− 1,
choosing e = 25 is a suitable choice. By the extended Euclidean algorithm,

21 = (p− 1) −5541 · e ,
4 = −(p− 1) +5542 · e and
1 = 6 · (p− 1) −(5541 + 5 · 5542) · e ,

hence d ≡ −(5541 + 5 · 5542) ≡ −33251 mod p− 1.
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≡ (1)e ≡ 1 mod p.

Thus the encryption of x0 is also a Q.R.. Similarly, x1 is a Q.n.R. means that x
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≡ (−1)e ≡ −1 mod p, since e is odd. Thus the encryption of x1 is also a Q.n.R..
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so y0 is a Q.n.R. and thus must be the encryption of x1 (since Bob is assumed to be honest). Hence
Alice should pick y1 to win.

c) If computing discrete logarithms modulo p is feasible, then Alice can determine Bob’s encryp-
tion exponent e (and thus the correspondance between xi and yi) as follows: When Alice receives
y0, y1, she computes α = logx0

y0 mod p− 1. If α exists and xα
1 ≡ y1 mod p then e = α. Otherwise,

e = logx0
y1 mod p− 1.

Problem 2. a) Let b = (1, 1, 0, 0, 1, 0, 1, 0). Then b(x) = x7 + x6 + x3 + x and we need to find b−1(x) ∈
Z2[x]/[ f (x)] for f (x) = x8 + x4 + x3 + x + 1. By the extended Euclidean algorithm,

x6 + x2 + 1 = f (x) + (x + 1)b(x)
x2 + 1 = (x + 1) f (x) + x2b(x) and

1 = (x5 + x4 + x3 + x2 + 1) f (x) + (x6 + x4 + x + 1)b(x) .

Hence b−1(x) ≡ (x6 + x4 + x + 1) mod f (x) so b∗(x) = x6 + x4 + x + 1 ∈ Z2[x]. Now we can
compute

σ(b) = (x4 + x3 + x2 + x + 1) · (x6 + x4 + x + 1) + (x6 + x5 + x + 1)
= x10 + x9 + x6 + x5 + x4 + x
≡ x2 + x + x6 + x5 + x4 + x ≡ x6 + x5 + x4 + x2 mod (x8 + 1)

.

Taking the coefficients gives c = (0, 1, 1, 1, 0, 1, 0, 0).
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b) Let g(x) = x8 + x4 + x3 + 1. g(1) ≡ 0 mod 2 so g(x) is reducible over Z2 with (x + 1) as a
factor. This means that the ring Z2[x]/[g(x)] is not a field and as a result, b(x) is not invertible for all
bytes b as required for encryption.

Problem 3. a) Let n = 151187. Bob’s uncertainty is not justified as the primality test never
identifies a prime as composite (on the contrary, it might pass a composite as a prime for some base).
Using Pollard’s p− 1 with B = 6 means computing gcd

(
26! − 1 mod n, n

)
which gives a factor of n.

26! ≡
(((

43)4
)5

)6

≡
((

644)5
)6

≡
(
167772165)6

≡
(
1466465)6 ≡

((
1466462)2 · 146646

)6
≡

((
45412)2 · 146646

)6

≡
(
592492 · 146646

)6 ≡ (33048 · 146646)6 ≡ 577236

≡
(
577232 · 57723

)2 ≡ (85623 · 57723)2 ≡ 1133992

≡ 377882 ≡ 122916 mod n

and gcd(122915, n) = 31. Hence n = 31 · 4877.
b) Let p = 151189, h = 82935 and g = 7. From congruences (2) and (3) we deduce that 293 and 43

must be prime divisors of p− 1 = 151188 so we get 151188
293·43 = 12 = 22 · 3. Therefore, we need to obtain

two more congruences using Pohlig-Hellman, one mod 3 and one mod 4:
modulo 3: Let α ≡ α0 mod 3. h′ = h

p−1
3 = h50396 and g′ = g50396. h′ ≡ g′α0 mod p and since

g′ 6≡ g′2 ≡ h′ mod p we have
α ≡ 2 mod 3 . (8)

modulo 4: Let α ≡ α0 + α1 · 2 mod 4. h′ = h
p−1

2 = h75594 and g′ = g75594 and by congruence (5) we
have α0 = 1. Next, h′′ = (h · g−α0)

p−1
4 ≡ (82935 · 7−1)37797 ≡ (82935 · 43197)37797 ≡ 358254319537797 ≡

11984037797 mod p (from congruence (7), 7p−2 ≡ 7−1 ≡ 43197 mod p ). Now, h′′ ≡ g′α1 mod p and
by congruence (5), α1 = 1. So,

α ≡ 3 mod 4 . (9)

Finally, to combine congruences (1), (3), (8) and (9) using the Chinese remainder theorem, we
need 516−1 mod 293 and 3516−1 mod 43 (37797−1 ≡ 1 mod 4 and 50396−1 ≡ 2−1 ≡ 2 mod 3).

From congruence (1) we get 516−1 ≡ 223−1 ≡ 113 mod 293 and from congruence (4) we get
3516−1 ≡ 33−1 ≡ 30 mod 43. Therefore,

α = 270 · 516 · 113 + 4 · 3516 · 30 + 3 · 37797 · 1 + 2 · 50396 · 2 ≡ 563 mod p− 1 .

Problem 4. a) Since textbook RSA is not randomized, anyone can encrypt ”Yes” and ”No” to learn
the corresponding ciphertexts and thus what Alice sends to Bob, even if the decryption exponent is
unconditionaly secret. ElGamal, on the other hand, is randomized and even if the message space
is as small as {Yes,No}, if computing discrete logarithms is intractable modulo the prime used, the
previous approach cannot be applied. Hence Alice’s choice could be appropriate.

b) Given an unsigned ElGamal ciphertext (y1, y2) = (gr, mgαr), due to its homomorphic prop-
erty, an adversary can modify it by multiplying the second component by anything. For example,
(y1, cy2) = (gr, cmgαr) would decrypt to cm. Another way is to raise both components to some power.
For example (yx

1 , yx
2) = (gxr, mxgαxr) would decrypt to mx.
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Let’s consider the first approach. What Eve is looking for is for a c such that cY ≡ N mod p
and cN ≡ Y mod p, where Y and N are the encodings of ”Yes” and ”No” respectively. Combining
the two congruences gives c2Y ≡ Y mod p i.e. c2 ≡ 1 mod p which means c ≡ ±1 mod p. The
non-trivial case is c ≡ −1 mod p which further implies N ≡ −Y mod p. Since the encoding chosen
satisfies this (17173 + 6546 = p), Eve will achieve her goal by sending (5844,−1279 mod p) =
(5844, 22440).

In the second approach Eve would be looking for an exponent x such that Yx ≡ N mod p and
Nx ≡ Y mod p. Combining them we get Yx2 ≡ Y mod p implying x2 ≡ 1 mod p− 1, i.e. x ≡ ±1
mod p− 1. The non-trivial case is x ≡ −1 mod p− 1 in which case Y−1 ≡ N mod p. This is not
the case with the encoding used here.
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