English

TMA4245 STATISTIKK - Proposed Solution

14. august 2008

Oppgave 1

Define
F: A random toaster unit fails.
We know that the probability that a toaster unit failing is
$P(F)=0.03=p$
a) Since the event "first toaster unit fail" is independent of the event " second toaster unit fail" we can write

$$
P(\text { fail } 1 \cap \text { fail } 2)=P(\text { fail } 1) P(\text { fail } 2)=p \times p=0.0009
$$

The probability that 2 out of 7 toaster unit fails can be considered as a result of a binomial experiment, and then we can compute it as

$$
P(\text { fail } 2 \text { out of } 7)=\binom{7}{2} p^{2}(1-p)^{5}=\frac{7!}{5!2!} 0.03^{2} 0.97^{5}=0.0163
$$

Using the definition of conditional probability and the fact that the events "fail 1", "fail 2 " and "not fail $3-7$ " are independent, we have that

$$
\begin{aligned}
P(\text { fail } 1 \cap \text { fail } 2 \mid \text { fail } 2 \text { out of } 7) & =\frac{P(\text { fail } 1 \cap \text { fail } 2 \cap \text { fail } 2 \text { out of } 7)}{P(\text { fail } 2 \text { out of } 7)} \\
& =\frac{P(\text { fail } 1 \cap \text { fail } 2 \cap \text { not fail } 3-7)}{P(\text { fail } 2 \text { out of } 7)} \\
& =\frac{p^{2}(1-p)^{5}}{\binom{7}{2} p^{2}(1-p)^{5}}=\frac{1}{\binom{7}{2}}=\frac{5!2!}{7!}=0.0476
\end{aligned}
$$

b) Using the fact that the event "More than 5 for fail " is equivalent to "no fail in 1-5" we write

$$
P(\text { More than } 5 \text { for fail })=P(\text { no fail in } 1-5)=(1-p)^{5}=0.8587
$$

Using the Law of total probability, we can use that
$P($ No two consecutive fails among first 5 units $)=$
$=\sum_{i=0}^{5} P($ No two consecutive fails among first 5 units \mid fail $) \times P($ i fail among 5 units $)$

Then,
$P($ No two consecutive fails among first 5 units $)=$
$=P($ No two consecutive fails among first 5 units $\mid 0$ fail $) \times P(0$ fail among 5 units $)$
$+P$ (No two consecutive fails among first 5 units $\mid 1$ fail $) \times P(1$ fail among 5 units $)$
$+P($ No two consecutive fails among first 5 units $\mid 2$ fail $) \times P(2$ fail among 5 units $)$
$+P($ No two consecutive fails among first 5 units $\mid 3$ fail $) \times P(3$ fail among 5 units $)$
$+P($ No two consecutive fails among first 5 units 4 fail $) \times P$ (4 fail among 5 units)
$+P$ (No two consecutive fails among first 5 units $\mid 5$ fail $) \times P$ (5 fail among 5 units)

$$
\begin{aligned}
& =1 \times(1-p)^{5}+1 \times\binom{ 5}{1} p(1-p)^{4}+\frac{\binom{5}{2}-4}{\binom{5}{2}} \times\binom{ 5}{2} p^{2}\left(1-p^{3}\right) \\
& +\frac{1}{\binom{5}{3}} \times\binom{ 5}{3} p^{3}(1-p)^{2}+0 \times P(4 \text { fail among } 5 \text { units })+0 \times P(5 \text { fail among } 5 \text { units }) \\
& =0.9964,
\end{aligned}
$$

where we have used that
$P($ No two consecutive fails among first 5 units $\mid 0$ fail $)=1$
$P($ No two consecutive fails among first 5 units $\mid 1$ fail $)=1$
$P($ No two consecutive fails among first 5 units $\mid 2$ fail $)=\frac{\binom{5}{2}-4}{\binom{5}{2}}$
$P($ No two consecutive fails among first 5 units $\mid 3$ fail $)=\frac{1}{\binom{5}{3}}$
$P($ No two consecutive fails among first 5 units $\mid 4$ fail $)=0$
$P($ No two consecutive fails among first 5 units $\mid 5$ fail $)=0$
c) We know from the exercise that
$P\left(F_{1} \cup F_{2}\right)=0.03, P\left(F_{1}\right)=0.02, P\left(F_{2} \mid F_{1}\right)=0.04$.
Question 1:

$$
P\left(F_{2} \cap F_{1}^{c}\right)=P\left(F_{1} \cup F_{2}\right)-P\left(F_{1}\right)=0.03-0.02=0.01
$$

Question 2:

$$
\begin{aligned}
P\left(F_{1} \mid F_{2}\right) & =\frac{P\left(F_{1} \cap F_{2}\right)}{P\left(F_{2}\right)}=\frac{P\left(F_{2} \mid F_{1}\right) P\left(F_{1}\right)}{P\left(F_{2} \cap F_{1}\right)+P\left(F_{2} \cap F_{1}^{c}\right)} \\
& =\frac{P\left(F_{2} \mid F_{1}\right) P\left(F_{1}\right)}{P\left(F_{2} \mid F_{1}\right) P\left(F_{1}\right)+P\left(F_{2} \cap F_{1}^{c}\right)}=\frac{0.4 \times 0.02}{0.4 \times 0.02+0.01} \\
& =\frac{0.008}{0.018}=0.444
\end{aligned}
$$

Oppgave 2

$X \sim N\left(x ; a, \sigma^{2}\right)$
a) $a=2.0, \sigma^{2}=0.04 \Rightarrow \sigma=0.2$.

$$
P(X \geq 1.9)=P\left(\frac{X-2}{0.2} \geq-0.5\right)=P(Z \geq-0.5)=0.6915
$$

$$
\begin{aligned}
P(1.8 \leq X \leq 2.4) & =P\left(\frac{1.8-2}{0.2} \leq \frac{X-2}{0.2} \leq \frac{2.4-2}{0.2}\right)=P(-1.0 \leq Z \leq 2.0) \\
& =P(Z \leq 2.0)-P(Z \leq-1.0)=0.8185 \\
P(X \leq 2.4 \mid X \geq 1.9) & =\frac{P(X \leq 2.4 \cap X \geq 1.9)}{P(X \geq 1.9)}=\frac{P(1.9 \leq X \leq 2.4)}{P(X \geq 1.9)}=\ldots=0.9670
\end{aligned}
$$

b) $V=\frac{(n-1) \hat{\sigma}^{2}}{\sigma^{2}} \sim \chi_{(n-1)}^{2}$, which means that

$$
\begin{equation*}
f(v ; n-1)=\frac{1}{2^{\frac{n-1}{2}} \Gamma\left(\frac{n-1}{2}\right)} v^{\frac{n-1}{2}-1} e^{-v / 2}, v \geq 0 \tag{1}
\end{equation*}
$$

since (1) is the density for a χ^{2} distribution with $n-1$ degrees of freedom. For a χ_{n-1}^{2} distribution we have that the mean and variance are given by

$$
E[V]=n-1 \quad \text { and } \quad \operatorname{Var}[V]=2(n-1)
$$

Using the properties of expectation

$$
E[V]=E\left[\frac{(n-1) \hat{\sigma}^{2}}{\sigma^{2}}\right]=\frac{(n-1)}{\sigma^{2}} E\left[\hat{\sigma}^{2}\right]=(n-1) \Rightarrow E\left[\hat{\sigma}^{2}\right]=\sigma^{2} .
$$

Hence, $\hat{\sigma}^{2}$ is an unbiased estimator for σ^{2}.

$$
\operatorname{Var}[V]=\operatorname{Var}\left[\frac{(n-1) \hat{\sigma}^{2}}{\sigma^{2}}\right]=\frac{(n-1)^{2}}{\sigma^{4}} \operatorname{Var}\left[\hat{\sigma}^{2}\right]=2(n-1) \Rightarrow \operatorname{Var}\left[\hat{\sigma}^{2}\right]=\frac{2 \sigma^{4}}{n-1}
$$

c)

$$
\begin{aligned}
P\left(\chi_{n-1,0.95}^{2} \leq V \leq \chi_{n-1,0.05}^{2}\right) & =0.90 \\
P\left(\chi_{n-1,0.95}^{2} \leq \frac{(n-1) \hat{\sigma}^{2}}{\sigma^{2}} \leq \chi_{n-1,0.05}^{2}\right) & =0.90 \\
P\left(\frac{(n-1) \hat{\sigma}^{2}}{\chi_{n-1,0.05}^{2}} \leq \sigma^{2} \leq \frac{(n-1) \hat{\sigma}^{2}}{\chi_{n-1,0.95}^{2}}\right) & =0.90
\end{aligned}
$$

Then, the 0.9 confidence interval for σ^{2} is

$$
\begin{equation*}
\left[\frac{(n-1) \hat{\sigma}^{2}}{\chi_{n-1,0.05}^{2}}, \frac{(n-1) \hat{\sigma}^{2}}{\chi_{n-1,0.95}^{2}}\right] \tag{2}
\end{equation*}
$$

Numerical values:

$$
\begin{aligned}
\hat{\sigma}^{2} & =\frac{1}{9} \sum_{i=1}^{10} X_{i}^{2}-\frac{10}{9}\left[\frac{1}{10} \sum_{i=1}^{10} X_{i}\right]^{2}=\frac{45}{9}-\frac{10}{9}\left(\frac{21}{10}\right)^{2}=0.1 \\
\chi_{9,0.05}^{2} & =16.919 \\
\chi_{9,0.95}^{2} & =3.325
\end{aligned}
$$

0.9 confidence interval for $\sigma^{2}:[0.053,0.271]$
d) Lets use $\hat{\sigma}^{2}=s$ to leave the notation uncluttered

$$
V=\frac{(n-1) S}{\sigma^{2}}, \quad S=\frac{\sigma^{2} V}{(n-1)}
$$

S is a function of V , which has density

$$
f_{v}(v)=\frac{1}{2^{\frac{n-1}{2}} \Gamma\left(\frac{n-1}{2}\right)} v^{\frac{n-1}{2}-1} e^{-v / 2}, v \geq 0 .
$$

S is a one-to-one transformation of a continuous random variable V, then we need to apply the following formula to compute the density of S,

$$
\begin{aligned}
f_{s}(s) & =f_{v}\left(\frac{(n-1) s}{\sigma^{2}}\right)\left|\frac{d v}{d s}\right| \\
& =\frac{1}{2^{\frac{n-1}{2}} \Gamma\left(\frac{n-1}{2}\right)}\left[\frac{(n-1) s}{\sigma^{2}}\right]^{\frac{n-1}{2}-1} \exp \left\{-\frac{(n-1) s}{\sigma^{2} 2}\right\} \frac{(n-1)}{\sigma^{2}} \\
& =\frac{1}{\left[\frac{2 \sigma^{2}}{n-1}\right]^{(n-1) / 2} \Gamma((n-1) / 2)} s^{(n-1) / 2-1} \exp \left\{-\frac{(n-1) s}{2 \sigma^{2}}\right\}
\end{aligned}
$$

The equation above has the form of a Gamma distribution. We can write that

$$
\begin{aligned}
f_{s}(s) & =\frac{1}{\left[\frac{2 \sigma^{2}}{n-1}\right]^{(n-1) / 2} \Gamma((n-1) / 2)} s^{(n-1) / 2-1} \exp \left\{-\frac{(n-1) s}{2 \sigma^{2}}\right\} \\
& =\frac{1}{\beta^{\alpha} \Gamma(\alpha)} s^{\alpha-1} \exp \{-s / \beta\}, \quad s \geq 0
\end{aligned}
$$

with $\beta=\frac{2 \sigma^{2}}{n-1}, \quad \alpha=\frac{n-1}{2}$.
Then, the expectation and the variance of S can be computed straitforwardly as $E(S)=E\left(\hat{\sigma}^{2}\right)=\alpha \beta=\frac{n-1}{2} \frac{2 \sigma^{2}}{n-1}=\sigma^{2}$, unibiased.
$\operatorname{Var}(S)=\operatorname{Var}\left(\hat{\sigma}^{2}\right)=\alpha \beta^{2}=\frac{n-1}{2} \frac{4 \sigma^{4}}{(n-1)^{2}}=\frac{2 \sigma^{4}}{(n-1)}$.

Oppgave 3

X_{1}, \ldots, X_{n} i.i.d. $f(x ; \beta)=\frac{\beta 2^{\beta}}{x^{\beta+1}}, 2 \leq x \leq \infty$
a) Since X_{1}, \ldots, X_{n} are independent, the likelihood function is given by

$$
L\left(\beta ; x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} \frac{\beta 2^{\beta}}{x_{i}^{\beta+1}}=\beta^{n} 2^{n \beta} \prod_{i=1}^{n} \frac{1}{x_{i}^{\beta+1}}
$$

To find the maximum of the likelihood function, it is easier to maximize the log-likelihood, given by

$$
\ln L\left(\beta ; x_{1}, \ldots, x_{n}\right)=n \ln \beta+n \beta \ln 2-(\beta+1) \sum_{i=1}^{n} \ln x_{i}
$$

We then set the first derivative of the log-likelihood equals to zero:

$$
\frac{d \ln L(\cdot)}{d \beta}=\frac{n}{\beta}+n \ln 2-\sum_{i} \ln x_{i}=0
$$

We then have

$$
\hat{\beta}=\frac{n}{\sum_{i} \ln x_{i}-n \ln 2}=\frac{n}{\sum_{i=1}^{n} \ln \left(x_{i} / 2\right)}
$$

The maximum likelihood estimator is:

$$
\hat{\beta}=\frac{n}{\sum_{i=1}^{n} \ln \left(X_{i} / 2\right)}
$$

