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Problem 1

a) Properties of a Poisson process:

(i) The number of eruptions in a time interval is independent of the number of eruptions
in other, disjoint time intervals.

(ii) The probability that an eruption will occur during a time interval is proportional
to the length of the time interval.

(iii) The probability that more than one eruption will occur during a very short time
interval is negligible.

Let X be the number of eruptions occurring during t = 5 years, or t = 5 ·12 = 60 months.

P (≥ 1) = 1− P (X = 0) = 1− e−λt = 1− e−0.026·60 = 0.789

The question What is the probability that the next eruption will occur more than three
years after the starting date? can be interpreted in two ways. Either that there are no
eruptions for the three first years of the tenancy;

P (More than 3 years to next eruption) = P (No eruption in 3 years) = e−0.024·36 = 0.392

Or that it is more then 4.5 years = 42 months to the next eruption;

P (More than 42 months to next eruption) = P (No eruption in 42 months) = e−0.024·42 = 0.336.
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Problem 2 Boligmarkedet i Trondheim

a) A venn diagram of the events

M T

We have

P (M) =
94

381
= 0.2467

P (T ) =
190

381
= 0.4987

P (M ∩ T ) =
50

381
= 0.1312

If the events M and T are disjoint, then P (M ∩ T ) = 0. Here, P (M ∩ T ) > 0 and the
events are thus not disjoint.
If the events are independent, then P (M ∩ T ) = P (M) · P (T ). Here

P (M) · P (T ) = 0.2467 · 0.4987 = 0.1230 6= P (M ∩ T )

and the events are thus not independent. But they are close to independent.

b) We notice that the expected value and variance of Y is

E(Y ) = E(βx+ ε(x)) = E(βx) + E(ε(x)) = βx+ 0 = βx

Var(Y ) = Var(βx+ ε(x)) = Var(βx) + Var(ε(x)) = 0 + τ 2x2 = τ 2x2

If β > 1 we thus expect the final price per m2, Y , to be greater then the suggested price
x, i.e. expect that the apartment will be sold at a higher price than suggested by the
estate company.

We now define W as the final price for an 60m2 apartment,

W = 60Y

As W is a linear combination of a Gaussian variable Y , then W must be Gaussian as
well. With suggested price per m2 x = 1.8/60 = 0.03 and assuming β = 1, 1, τ 2 = 0.12
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its expected value and variance is

E(V ) = 60E(Y ) = 60βx = 60 · 1.1 · 0.03 = 1.98

Var(V ) = 602Var(Y ) = 602τ 2x2 = 602 · 0.12 · 0.032 = 0.182

Thus V ∼ N(1.98, 0.182)

(i) The probability of paying more than 2 mill.kr for the apartment is

P (W > 2) = 1− P (W ≤ 2) = 1− P
(
W − 1.98

0.18
≤ 2− 1.98

0.18

)
= 1− Φ(Z ≤ 0.11) = 1− 0.5438 = 0.4562

c) The maximum likelihood estimator of β is

β̂ =
1

N

N∑
i=1

Yi
xi

We first notice that the estimator is a linear combination of Gaussian variables Y ′s, and
must thus be Gaussian itself. The expectation and variance of β̂ is

E(β̂) = E

(
1

N

N∑
i=1

Yi
xi

)
=

1

N

N∑
i=1

E(Yi)

xi
=

1

N

N∑
i=1

βxi
xi

=
1

N

N∑
i=1

β = β

Var(β̂) = Var

(
1

N

N∑
i=1

Yi
xi

)
=

1

N2

N∑
i=1

Var(Yi)
x2i

=
1

N2

N∑
i=1

τ 2x2i
x2i

=
τ 2

N

Thus β̂ ∼ N(β, τ
2

N
).

A confidence interval can be found by

P

−zα/2 ≤ β̂ − β√
τ2

N

≤ zα/2

 = 1− α

P

(
−zα/2 ·

τ√
N
≤ β̂ − β ≤ zα/2 ·

τ√
N

)
= 1− α

P

(
β̂ − zα/2 ·

τ√
N
≤ β ≤ β̂ + zα/2 ·

τ√
N

)
= 1− α

With α = 0.05 we have z0.025 = 1.960, and the 95%-confidence interval is[
β̂ − zα/2 ·

τ√
N
, β̂ + zα/2 ·

τ√
N

]
=

[
1

30
· 32.98− 1.960 · 0.1√

30
,

1

30
· 32.98 + 1.960 · 0.1√

30

]
= [1.0635 , 1.135]
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d) To test if the two areas has the same proportion between suggested price and expected
price we test for whether the slope parameter β is equal or not. Formulated as a hypoth-
esis test

H0 : β1 = β2 , H1 : β1 6= β2

Here we have denoted the parameter from Midtbyen as β1. The regression model for
Tyholt is equal to the model for Midtbyen, and we find the maximum likelihood estimate
of β2 similar to what we did for β1 in c)

β̂2 =
1

N

M∑
i=1

Wi

xi
∼ N

(
β2,

τ 2

M

)

The variable β̂1 − β̂2 is thus a linear combination of Gaussian variables, and is itself
Gaussian with mean and variance by

E(β̂1 − β̂2) = β1 − β2

Var(β̂1 − β̂2) = Var(β̂1) + Var(β̂2) =
τ 2

N
+
τ 2

M

A confidence interval for β1 − β2 is

P

−zα/2 ≤ (β̂1 − β̂2)− (β1 − β2)√
τ2

N1
+ τ2

N2

≤ zα/2

 = 1− α

P

(
−zα/2 ·

√
τ 2

N1

+
τ 2

N2

≤ (β̂1 − β̂2)− (β1 − β2) ≤ zα/2 ·

√
τ 2

N1

+
τ 2

N2

)
= 1− α

P

(
(β̂1 − β̂2)− zα/2 ·

√
τ 2

N1

+
τ 2

N2

≤ (β1 − β2) ≤ (β̂1 − β̂2) + zα/2 ·

√
τ 2

N1

+
τ 2

N2

)
= 1− α

With inserted values we find the 95% -confidence interval[
(β̂1 − β̂2)− zα/2 ·

√
τ2

N1
+ τ2

N2
, (β̂1 − β̂2) + zα/2 ·

√
τ2

N1
+ τ2

N2

]
=

[(
32.98
30
− 56.66

50

)
− 1.960 ·

√
0.12

30
+ 0.12

50
,
(
32.98
30
− 56.66

50

)
+ 1.960 ·

√
0.12

30
+ 0.12

50

]
= [−0.0791 , 0.0114]

As the interval does include the value 0 we do not reject the null hypothesis of equal
parameter β at a 5% significance level.
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e) In the regression model we have assumed that the mean is linear with respect to the
suggested price and that the error terms, ε, are independent Gaussian distributed with
mean 0 and variance x2i τ 2.

From the Figure it seems at there might not be a linear relationship between the mean
and x as all observations for x > 30.5 are above the line, the last 6 all more then two
standard deviations.

We can analyze this assumption by making scatter plots for the residuals ei = yi − ŷi.
If these are independent, the residuals should be spread quite uniformly in the scatter
plot. We can also make a histogram of the residuals and check if it resembles a Gaussian
density.

Further normality can can be checked bt a qq-plot. Note that this is not strait forward
as we have assumed known, but different variances.

Problem 3

a) The cumulative distribution function of an exponentially distributed variable having
expected value µ is given by F (t) = 1− e−t/µ, so when µ = 2, P (X < 1) = 1− e−1/2 =
0.39, where X is production time.

None of indepentent production times X1, X2, X3, X4, X5 being less than 1 is the
same as all of them being greater than 1, the probability of which is (P (Xi > 1))5 =
(1− (1− e−1/2))5 = 0.082.

b) First we note that EX̄ = E( 1
n1

∑n1

i=1Xi) = 1
n1

∑n1

i=1EXi = 1
n1
· n1µ = µ and that

VarX̄ = Var( 1
n1

∑n1

i=1Xi) = 1
n2
1

∑n1

i=1 VarXi = 1
n2
1
·n1µ

2 = µ2/n1, and, likewise, EȲ = µ/c

and VarȲ = µ2/(c2n2).

For c = 2, α = 1
2
and β = 1, µ̃ = 1

2
X̄ + Ȳ , so that Eµ̃ = E(1

2
X̄ + Ȳ ) = 1

2
µ + µ/2 = µ,

so µ̃ is unbiased, and Varµ̃ = 1
4
µ2/n1 + µ2/(4n2) = µ2

4
( 1
n1

+ 1
n2

).

By the central limit theorem, X̄ and Ȳ are approximately normally distributed. Since
X̄ and Ȳ are independent, µ̃ = 1

2
X̄ + Ȳ is approximately normally distributed with
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expected value µ and standard deviation µ
2

√
1
n1

+ 1
n2
. So

0.95 ≈ P

−z0.025 < µ̃− µ
µ
2

√
1
n1

+ 1
n2

< z0.025

 = P

−z0.025 < µ̃
µ
− 1

1
2

√
1
n1

+ 1
n2

< z0.025


= P

(
1− 1

2
z0.025

√
1

n1

+
1

n2

<
µ̃

µ
< 1− 1

2
z0.025

√
1

n1

+
1

n2

)

= P

 µ̃

1 + 1
2
z0.025

√
1
n1

+ 1
n2

< µ <
µ̃

1− 1
2
z0.025

√
1
n1

+ 1
n2

 ,

the double inequality defining a 95% confidence interval for µ. Note that we in the last
step of solving the double inequality have assumed that 1 − 1

2
z0.025

√
1
n1

+ 1
n2
> 0, that

is, 1
n1

+ 1
n2
< 4/z0.025 ≈ 1.04, which is satisfied if n2 ≥ 2 and n2 ≥ 2, which was obviously

already assumed when the central limit theorem was invoked.

When n1 = 30, n2 = 20, x̄ = 2.07 and ȳ = 0.59, the 95% confidence interval (1.27, 2.27)
is obtained.

The calculations above can be simplified if we make another assumption: that µ in the
denominator can be replaced by µ̃. Then

0.95 ≈ P

−z0.025 < µ̃− µ
µ̃
2

√
1
n1

+ 1
n2

< z0.025

 = P

−z0.025 < 1− µ
µ̃

1
2

√
1
n1

+ 1
n2

< z0.025


= P

(
µ̃

(
1− 1

2
z0.025

√
1

n1

+
1

n2

)
< µ < µ̃

(
1 +

1

2
z0.025

√
1

n1

+
1

n2

))
.

Inserting numerical values, we get the confidence interval (1.17, 2.08).

c) We want µ̃ unbiased, that is µ = Eµ̃ = E(αX̄ + βȲ ) = αµ + βµ/c, giving β/c =
1 − α. We want the variance, Var(µ̃) = Var(αX̄ + βȲ ) = α2VarX̄ + β2VarȲ =
α2µ2/n1 + (β/c)2µ2/n2 = α2µ2/n1 + (1 − α)2µ2/n2 = µ2(α2/n1 + (1 − α)2/n2), to
be as small as possible. It is easily checked that the second degree polynomial
α2/n1 + (1 − α)2/n2 in α has its minimum at α = n1/(n1 + n2), yielding β =
c(1 − α) = cn2/(n1 + n2), so that µ̃ = (n1X̄ + cn2Ȳ )/(n1 + n2), and Varµ̃ =
n2
1/(n1 + n2)

2 · µ2/n1 + n2
2/(n1 + n2)

2 · µ2/n2 = µ2/(n1 + n2).

d) We have the likelihood function

L =

n1∏
i=1

1

µ
e−xi/µ ·

n2∏
j=1

c

µ
e−cyi/µ = c−n2µ−n1−n2e−

1
µ
(
∑n1
i=1 xi+c

∑n2
j=1 yj)
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and log-likelihood

lnL = −n2 ln c− (n1 + n2) lnµ− 1

µ

(
n1∑
i=1

xi + c

n2∑
j=1

yj

)
.

Setting the partial derivatives

∂ lnL

∂µ
= −n1 + n2

µ
+

1

µ2

(
n1∑
i=1

xi + c

n2∑
j=1

yj

)
and

∂ lnL

∂c
=
n2

c
− 1

µ

n2∑
j=1

yj

equal to zero we get

(n1 + n2)µ =

n1∑
i=1

xi + c

n2∑
j=1

yj and n2µ = c

n2∑
j=1

yj, (1)

respectively. The first equation yields the maximum likelihood estimator

µ∗ =

∑n1

i=1Xi + c
∑n2

j=1 Yj

n1 + n2

=
n1X̄ + cn2Ȳ

n1 + n2

,

which we note is the same estimator as µ̃ from (c), in the case that c is known. Sub-
tracting the second equation of (1) from the first, we get n1µ =

∑n1

i=1 xi so that µ̂ = X̄.
Substituting into the second equation, we get ĉ = X̄/Ȳ .


