

Oppgave 1

A company produces electrical components. The components can have two types of faults. We randomly choose one component from the production process and define two events: $A=$ the component has a fault of type A , and $B=$ the component has a fault of type B . Let A^{\prime} and B^{\prime} be the associated complementary events.
It is known that $P(B)=0.09, P(A \mid B)=0.5$ and $P\left(A \mid B^{\prime}\right)=0.01$.
a) We study a randomly chosen component from the production process.

What is the probability that the component has both a fault of type A and a fault of type B , that is, $P(A \cap B)$?
What is the probability that the component has a fault of type A, that is, $P(A)$.
Given that the component has a fault of type A, what is the probability that the component has an a fault of type B , that is, $P(B \mid A)$?

We are now only interested in whether a component is fault-free or not. The management of the company has over many years monitored the production process, and is confident that the probability that a component is fault-free is 0.9 . We randomly choose 20 components from the production prosess, and investigate if the components are fault-free. Let X be a random variable denoting the number of fault-free components.
b) What is the distribution of X ? Justify your answer.

What is the probability that exactly 19 components are fault-free?
What is the probability that more than 15 components are fault-free?
The management of the company has implemented changes in the production process and hopes that the changes have lead to an increased proportion of fault-free components. We denote this unknown proportion of fault-free components p. We draw a random sample of size n components from the new production process and denote by X the number of fault-free components.
An intuitive estimator for p is the proportion of fault-free components in the random sample, that is, $\hat{P}=\frac{X}{n}$. When we have observed $X=x$ fault-free components we may calculate the estimate $\hat{p}=\frac{x}{n}$ for p. The random sample of size n is large enough for us to assume that $\frac{X-n p}{\sqrt{n \hat{p}(1-\hat{p})}}$ approximately follows a standard normal distribution.
c) Derive a 90% confidence interval for p.

Calculate numerical values for the confidence interval when $n=500$ and $x=470$.
Explain briefly how to interpret the interval.

Oppgave 2

In this problem we consider the calculation of the expected value and the variance of an average when the observations making up the average are dependent.

Let X_{1} and X_{2} be random variables with $\mathrm{E}\left(X_{1}\right)=\mathrm{E}\left(X_{2}\right)=2, \operatorname{Var}\left(X_{1}\right)=\operatorname{Var}\left(X_{2}\right)=1$ and $\operatorname{Cov}\left(X_{1}, X_{2}\right)=\frac{1}{2}$.
Calculate $\mathrm{E}\left(\frac{1}{2} X_{1}+\frac{1}{2} X_{2}\right)$ and $\operatorname{Var}\left(\frac{1}{2} X_{1}+\frac{1}{2} X_{2}\right)$.
Further, let $X_{1}, X_{2}, \ldots, X_{10}$ be random variables with $\mathrm{E}\left(X_{i}\right)=2$ and $\operatorname{Var}\left(X_{i}\right)=1$ for $i=$ $1,2, \ldots, 10$ and $\operatorname{Cov}\left(X_{i}, X_{j}\right)=\frac{1}{2}$ for all $i=1,2, \ldots, 10$ and $j=1,2, \ldots, 10$ where $i \neq j$. Let $\bar{X}=\frac{1}{10} \sum_{i=1}^{10} X_{i}$.
Calculate $\mathrm{E}(\bar{X})$ and $\operatorname{Var}(\bar{X})$.
Hint: you may use the following formula for the variance of a sum (the formula is also given in Tabeller and formler i statistikk)

$$
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}+b\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i=2}^{n} \sum_{j=1}^{i-1} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right) .
$$

Oppgave 3

We study a population of male students, and assume that the height of a randomly chosen male from the population is normally distributed with mean μ and variance σ^{2}.
a) Assume (only in this subproblem) that $\mu=181 \mathrm{~cm}$ and $\sigma=6 \mathrm{~cm}$. We randomly select two male students from the population and let X_{1} denote the height of the first student and X_{2} the height of the second student. We assume that X_{1} and X_{2} are independent random variables.
Calculate the following probabilites:

$$
\mathrm{P}\left(X_{1}>190\right)
$$

$\mathrm{P}\left(X_{1}>190 \mid X_{1}>185\right)$
$\mathrm{P}\left(X_{1}>190 \mid X_{2}>185\right)$

Two research groups have independently of each other estimated the mean height of male students, μ. Research group 1 used a random sample of size n and observed the heights $x_{1}, x_{2}, \ldots, x_{n}$, and research group 2 used a random sample of size m and observed the heights $y_{1}, y_{2}, \ldots, y_{m}$. The two random samples were drawn independently of each other from the given population.
Both research groups used the empirical mean (average) as the estimator for $\mu, \bar{X}=\left(X_{1}+\right.$
$\left.X_{2}+\ldots+X_{n}\right) / n$ and $\bar{Y}=\left(Y_{1}+Y_{2}+\ldots+Y_{m}\right) / m$, and research group 1 found $\bar{x}=180 \mathrm{~cm}$ and research group 2 found $\bar{y}=183 \mathrm{~cm}$.
You have studied statistics and know that you can combine the estimates from the independent studies to construct an estimate for μ that has lower uncertainty than each of the separate estimates. You have decided to use the estimator

$$
\hat{\mu}=a \bar{X}+b \bar{Y}
$$

where a and b are real numbers.
b) Explain which two properties characterize a good estimator.

Find expressions for a and b (as functions of n and m) so that $\hat{\mu}$ is an estimator for μ that satisfies the two properties.
What is your estimate for μ when $n=64$ and $m=192$?
After closer consideration you find the difference between the two estimates from the two research groups to be unreasonably large taking the sample sizes $n=64$ and $m=192$ into consideration. Your claim is that the two research group have collected the random samples from different populations.
Assume that research group 1 drew a random sample from a normally distributed population with mean μ_{1} and standard deviation σ_{1}, and that research group 2 drew a random sample from a normally distributed population with mean μ_{2} and standard deviation σ_{2}. You have earlier been informed that $\bar{x}=180 \mathrm{~cm}$ and $\bar{y}=183 \mathrm{~cm}$. You contact the research groups and they send you the empirical standard deviations for their observations, $s_{1}=6.0$ for research group 1 and $s_{2}=5.5$ for research group 2 .
c) Use your claim (given earlier in the text) to formulate a null- and an alternative hypothesis.
You may consider it known that the formula for the number of degrees of freedom in a test for the difference in means when σ_{1} can be different from σ_{2}, is

$$
\nu=\frac{\left(s_{1}^{2} / n+s_{2}^{2} / m\right)^{2}}{\left(s_{1}^{2} / n\right)^{2} /(n-1)+\left(s_{2}^{2} / m\right)^{2} /(m-1)}=100.6,
$$

where the value is calculated with the numerical values for s_{1}, s_{2}, n and m as given earlier in the text.

Argue why this test can be used and find the rejection region of the test when the significance level is chosen to be $\alpha=0.05$.
What is the conclusion of the hypothesis test when you use the data given in the text?

Oppgave 4

In Figure 1 you find a scatter plot of birth weight (measured in kg) and gestational age (time from the first day of the last menstrual cycle of the mother, measured in weeks) for $n=17$ births.
We would like to fit a simple linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad i=1,2, \ldots, n,
$$

where each ϵ_{i} is a normally distributed random variable with expected value 0 and variance σ^{2}. Further, $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}$ are independent, and Y_{i} is birth weight and x_{i} is gestational age.

Figur 1: Scatter plot of birth weight, y_{i}, and gestational age, x_{i} for $i=1, \ldots, 17$ children.
a) Is it reasonable to use a linear regression model for the observations in Figure 1? Discuss briefly.
Briefly explain how the least squares method can be used to find estimators B_{0} for β_{0} and B_{1} for β_{1}, and illustrate by drawing a figure. You shall not derive the expressions for the estimators.

It is given that the estimate for β_{0} is -4.02 and for β_{1} is 0.18 . Find the predicted birth weight for children at gestational age 40 weeks.
b) Find an expression for the variance of $\hat{Y}_{0}=B_{0}+B_{1} x_{0}$, where B_{0} and B_{1} are the least squares estimators for β_{0} and β_{1}. You may use that $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$ and B_{1} are independent random variables.
Examine Figure 2 and use the expression for the variance of \hat{Y}_{0} to explain why the estimate for the expected value $\mathrm{E}\left(\hat{Y}_{0}\right)$ is more uncertain at $x_{0}=29$ weeks than at $x_{0}=39$ weeks.

Oppgave 5

Assume that Y is uniformly distributed with probability density function

$$
f_{Y}(y)= \begin{cases}1, & 0<y<1 \\ 0, & \text { else }\end{cases}
$$

Find the cumulative distribution function $F_{Y}(y)$ for Y.
With the aid of a computer we often generate observations from a given distribution by first

Figur 2: Scatter plot of birth weight and gestational age for 17 children with estimated expected value of birth weight (regression line) and limits for 95% confidence intervals for expected birthweight as a function of gestational age.
drawing an observation from a uniform distribution and then transforming the observation. We will study the transformation $X=-\ln (Y) / \lambda$, where $\lambda>0$.

Use $F_{Y}(y)$ to find the cumulative distribution function $F_{X}(x)$ for X.
Find the probability density function $f_{X}(x)$ of X . Which known statistical distribution is this?

Fasit

1. a) $0.045,0.054,0.83 \mathbf{b})$ binomial distribution, $0.270,0.957 \mathbf{c})[0.923,0.957]$
2. $2,0.75,2,0.55$
3. a) $0.0668,0.2657,0.0668$ b) $a=n /(n+m), b=m /(n+m), 182.25 \mathbf{c}) H_{0}: \mu_{1}=\mu_{2}$ against $H_{1}: \mu_{1} \neq \mu_{2}$, reject H_{0}
4. a) 3.18
5. Exponential distribution with mean value $1 / \lambda$
