Norwegian University of
Science and Technology

Department of Mathematical Sciences

Examination paper for TMA4240 Statistics - solution sketch

Academic contact during examination:
Phone:

Examination date:

Examination time (from-to): 09:00-13:00
Permitted examination support material:

Other information:

Language: English
Number of pages: 8
Number of pages enclosed: 0

Checked by:
Informasjon om trykking av eksamensoppgave Originalen er:
1-sidig $\square \quad$ 2-sidig \boxtimes
sort/hvit $\boxtimes \quad$ farger \square
skal ha flervalgskjema

Problem 1

a) To find the cumulative distribution function $F_{Y}(y)$:

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y)=P\left(X^{2} \leq y\right)=P(-\sqrt{y} \leq X \leq+\sqrt{y}) \\
& =\int_{-\sqrt{y}}^{\sqrt{y}} \frac{1+x}{2} d x=\sqrt{y}
\end{aligned}
$$

for $y \in(0,1)$.
Then

$$
F_{Y}(y)= \begin{cases}0 & y \leq 0 \\ \sqrt{y} & y \in(0,1) \\ 1 & y \geq 1\end{cases}
$$

We then find the pdf by deriving $F_{Y}(y)$ wrt y :

$$
f_{Y}(y)=\frac{d F_{Y}(y)}{d y}= \begin{cases}0 & y \leq 0 \\ \frac{1}{2} y^{-1 / 2} & y \in(0,1) \\ 0 & y>1\end{cases}
$$

Finally we get the expected value of $2 Y-Y^{2}$ by:

$$
\begin{aligned}
E\left(2 Y-Y^{2}\right) & =\int_{\mathcal{R}}\left(2 y-y^{2}\right) f_{Y}(y) d y \\
& =\int_{0}^{1}\left(2 y-y^{2}\right) \frac{1}{2} y^{-1 / 2} d y \\
& =\frac{2}{3}-\frac{1}{5} \\
& =\frac{7}{15}
\end{aligned}
$$

Problem 2

a) A Poisson process must satisfy the following properties

- The number of events occurring in disjoint time intervals are independent
- The probability that a single outcome will occur in a very short time interval is proportional to the length of the time interval

$$
P(X=1 \text { in }(0, t))=\lambda t+o(t)
$$

- The probability that more than one outcome will occur in such a short time interval is negligible

$$
P(X \geq 2 \text { in }(0, t))=o(t)
$$

The parameter λ is the expected number of cars passing by the specific point every minute.
b) We have that $P(X(t)=x)=\frac{(\lambda t)^{x}}{x!} \exp \{-(\lambda t)\}$ with $\lambda=1.5$

$$
\begin{gathered}
P(X(1)=2)=\frac{(\lambda 1)^{2}}{2!} \exp \{-(\lambda 1)\}=\frac{1.5^{2}}{2!} \exp \{-1.5\}=0.25 \\
P(X(2) \geq 2)=1-P(X(2) \leq 1)=1-\sum_{x=0}^{1} \frac{(2 \lambda)^{x}}{x!} \exp \{-2 \lambda\}=1-0.1991=0.8
\end{gathered}
$$

To solve the last question we first compute the probability that during 1 minute period there are more than 5 cars passing:

$$
P(X(1)>5)=1-P(X(1) \leq 5)=1-\sum_{x=0}^{5} \frac{(\lambda)^{x}}{x!} \exp \{-(\lambda)\}=1-0.9955=0.0045
$$

Let $Z=\{$ more than 5 cars are passing in at least period $\}$, thus

$$
\begin{aligned}
P(Z) & =1-P(\text { at most } 5 \text { cars are passing in every period }) \\
& =1-(P(\text { at most } 5 \text { cars are passing in one period }))^{10} \\
& =1-(1-0.045)^{10} \\
& =0.044
\end{aligned}
$$

c) The hypotheses test to perform is:

$$
\begin{cases}H_{0}: & \lambda=1.5 \\ H_{1}: & \lambda>1.5\end{cases}
$$

We have that $X_{i} \sim \operatorname{Poisson}\left(\lambda t_{i}\right)$ for $i=1, \ldots, 10$ and the X_{i} 's are independent. Therefore the stochastic variable $\sum_{i=1}^{10} X_{i}$ is distributed as a Poisson with mean $\mu=\lambda \sum_{i=1}^{10} t_{i}$ and variance $\mu=\lambda \sum_{i=1}^{10} t_{i}$.

Under H_{0} we have that $\lambda=1.5$, moreover, from the data is $\sum_{i=1}^{10} t_{i}=100$.
Thus, $\sum_{i=1}^{10} X_{i}$ is approximately normally distributed with mean $\mu=\lambda \sum_{i=1}^{10} t_{i}$ and variance $\mu=\lambda \sum_{i=1}^{10} t_{i}$ since $\mu=150$ under the null hypothesis. Alternatively, we have

$$
E(\widehat{\lambda})=E\left(\frac{\sum_{i=1}^{10} X_{i}}{\sum_{i=1}^{10} t_{i}}\right)=\frac{\lambda \sum_{i=1}^{10} t_{i}}{\sum_{i=1}^{10} t_{i}}=\lambda
$$

and

$$
\operatorname{Var}(\widehat{\lambda})=\operatorname{Var}\left(\frac{\sum_{i=1}^{10} X_{i}}{\sum_{i=1}^{10} t_{i}}\right)=\frac{\lambda \sum_{i=1}^{10} t_{i}}{\left(\sum_{i=1}^{10} t_{i}\right)^{2}}=\frac{\lambda}{\sum_{i=1}^{10} t_{i}}
$$

A test statistics is then

$$
Z=\frac{\hat{\lambda}-\lambda}{\sqrt{\frac{\lambda}{\sum_{i=1}^{10} t_{i}}}}=\frac{\sum_{i=1}^{10} X_{i}-\lambda \sum_{i=1}^{10} t_{i}}{\sqrt{\lambda \sum_{i=1}^{10} t_{i}}}
$$

which is $N(0,1)$ under H_{0}.
With a significance of 1% we reject if $Z>z_{0.01}=2.326$. In our case we have

$$
Z=\frac{192-1.5 \cdot 100}{\sqrt{1.5 \cdot 100}}=3.429
$$

Therefore we reject H_{0} and build a toll house.
d) We have that Z is a binomial random variable with parameters $n=10$ and

$$
p=P\left(X(t)>\lambda_{0} t\right)
$$

Under $H_{0}: \lambda=\lambda_{0}=1.5$ we have that $X(t) \sim \operatorname{Poisson}(1.5 t)$, so

$$
p=1-P(X(t) \leq 15)=1-\sum_{x=0}^{15} \frac{15^{x}}{x!} \exp \{-15\}=1-0.5681=0.4319
$$

So under H_{0} we have $Z \sim \operatorname{Binom}(n=10, p=0.4319)$
We need to find the smallest value of k such that when $\lambda=1.5$ we have $P(Z \geq k) \leq 0.01$.
For different values of k we have:

k	$P\left(Z \geq k\right.$ when H_{0} is correct $)$
10	0.00022
9	0.0032
8	0.0207

So we have that $k=9$.
In our dataset we have that $z=8$ so we do not reject H_{0}.

Problem 3

a) Since $Y \sim n(y ; 15,4)$ we have

$$
\begin{aligned}
P(Y>20) & =1-P(Y \leq 20) \\
& =1-P\left(\frac{Y-15}{4} \leq \frac{20-15}{4}\right) . \\
& =1-\Phi(1.25) \\
& =1-0.8944 \\
& =0.1056
\end{aligned}
$$

Since Y is normally distributed with expectation 15 and the normal distribution is symmetric around the mean, we get that $P(Y>20)=P(Y<$ $10)=0.1056$. Since the events $Y>20$ and $Y<10$ are disjoint we get

$$
P(Y<10 \cup Y>20)=2 P(Y>20)=2 \cdot 0.1056=0.2112
$$

Finally, from the definition of conditional probability we obtain

$$
\begin{aligned}
P(Y>20 \mid Y>10) & =\frac{P(Y>10 \cap Y>20)}{P(Y>10)} \\
& =\frac{P(Y>20)}{P(Y>10)} \\
& =\frac{0.1056}{1-0.1056} \\
& =0.1181
\end{aligned} .
$$

b) The likelihood function is given as

$$
\begin{aligned}
L(\beta)= & \prod_{i=1}^{n} n\left(y_{i} ; \beta x_{i}, 4\right) \cdot \prod_{i=1}^{n} n\left(z_{i} ; c_{0}+\beta x_{i}, 4\right) \\
= & \left(\frac{1}{\sqrt{2 \pi \cdot 4^{2}}}\right)^{n} \exp \left\{-\frac{1}{2 \cdot 4^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta x_{i}\right)^{2}\right\} \\
& \times\left(\frac{1}{\sqrt{2 \pi \cdot 4^{2}}}\right)^{n} \exp \left\{-\frac{1}{2 \cdot 4^{2}} \sum_{i=1}^{n}\left(z_{i}-c_{0}-\beta x_{i}\right)^{2}\right\} \\
= & \left(2 \pi \cdot 4^{2}\right)^{-n} \exp \left\{-\frac{1}{2 \cdot 4^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta x_{i}\right)^{2}\right\} \exp \left\{-\frac{1}{2 \cdot 4^{2}} \sum_{i=1}^{n}\left(z_{i}-c_{0}-\beta x_{i}\right)^{2}\right\}
\end{aligned}
$$

The log-likelihood is given as

$$
l(\beta)=-n \log \left(2 \pi \cdot 4^{2}\right)-\frac{1}{2 \cdot 4^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta x_{i}\right)^{2}-\frac{1}{2 \cdot 4^{2}} \sum_{i=1}^{n}\left(z_{i}-c_{0}-\beta x_{i}\right)^{2}
$$

Differentiating with respect to β

$$
\begin{aligned}
l^{\prime}(\beta) & =-\frac{1}{2 \cdot 4^{2}} \sum_{i=1}^{n} 2\left(y_{i}-\beta x_{i}\right)\left(-x_{i}\right)-\frac{1}{2 \cdot 4^{2}} \sum_{i=1}^{n} 2\left(z_{i}-c_{0}-\beta x_{i}\right)\left(-x_{i}\right) \\
& =\frac{1}{4^{2}} \sum_{i=1}^{n} x_{i}\left(y_{i}+z_{i}-c_{0}-2 \beta x_{i}\right)
\end{aligned}
$$

Set $l^{\prime}(\beta)=0$ and solve for β

$$
\begin{array}{r}
\sum_{i=1}^{n} x_{i}\left(y_{i}+z_{i}-c_{0}-2 \beta x_{i}\right)=0 \\
\beta \cdot 2 \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} x_{i}\left(y_{i}+z_{i}\right)-c_{0} \sum_{i=1}^{n} x_{i} \\
\beta=\frac{\sum_{i=1}^{n} x_{i}\left(y_{i}+z_{i}\right)-c_{0} \sum_{i=1}^{n} x_{i}}{2 \sum_{i=1}^{n} x_{i}^{2}}
\end{array}
$$

Thus, the MLE for β is

$$
\widehat{\beta}=\frac{\sum_{i=1}^{n} x_{i}\left(Y_{i}+Z_{i}\right)-c_{0} \sum_{i=1}^{n} x_{i}}{2 \sum_{i=1}^{n} x_{i}^{2}}
$$

Its expectation and variance is given as

$$
\begin{aligned}
\mathrm{E}(\widehat{\beta}) & =\mathrm{E}\left(\frac{\sum_{i=1}^{n} x_{i}\left(Y_{i}+Z_{i}\right)-c_{0} \sum_{i=1}^{n} x_{i}}{2 \sum_{i=1}^{n} x_{i}^{2}}\right) \\
& =\frac{\sum_{i=1}^{n} x_{i} \cdot \mathrm{E}\left(Y_{i}+Z_{i}\right)-c_{0} \sum_{i=1}^{n} x_{i}}{2 \sum_{i=1}^{n} x_{i}^{2}} \\
& =\frac{\sum_{i=1}^{n} x_{i} \cdot\left(\beta x_{i}+c_{0}+\beta x_{i}\right)-c_{0} \sum_{i=1}^{n} x_{i}}{2 \sum_{i=1}^{n} x_{i}^{2}} \\
& =\frac{2 \beta \sum_{i=1}^{n} x_{i}^{2}+c_{0} \sum_{i=1}^{n} x_{i}-c_{0} \sum_{i=1}^{n} x_{i}}{2 \sum_{i=1}^{2} x_{i}^{2}} \\
& =\beta
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(\widehat{\beta}) & =\operatorname{Var}\left(\frac{\sum_{i=1}^{n} x_{i}\left(Y_{i}+Z_{i}\right)-c_{0} \sum_{i=1}^{n} x_{i}}{2 \sum_{i=1}^{n} x_{i}^{2}}\right) \\
& =\frac{\sum_{i=1}^{n} x_{i}^{2} \cdot \operatorname{Var}\left(Y_{i}+Z_{i}\right)}{\left(2 \sum_{i=1}^{n} x_{i}^{2}\right)^{2}} \\
& =\frac{2 \sigma^{2} \sum_{i=1}^{n} x_{i}^{2}}{\left(2 \sum_{i=1}^{n} x_{i}^{2}\right)^{2}} \\
& =\frac{\sigma^{2}}{2 \sum_{i=1}^{n} x_{i}^{2}} \\
& =\frac{4^{2}}{2 \sum_{i=1}^{n} x_{i}^{2}}
\end{aligned}
$$

since Y_{i} and Z_{i} are independent.
c) Since $\widehat{\beta}$ is a linear combination of independent and normally distributed random variables it is also normally distributed:

$$
\widehat{\beta} \sim n\left(z ; \beta, \sqrt{\frac{4^{2}}{2 \sum_{i=1}^{n} x_{i}^{2}}}\right) .
$$

We therefore construct a $(1-\alpha) \cdot 100 \%$ confidence interval for β based on

$$
\begin{gathered}
Z=\frac{\widehat{\beta}-\beta}{\sqrt{\frac{4^{2}}{2 \sum_{i=1}^{n} x_{i}^{2}}}} \sim n(z ; 0,1) . \\
P\left(-z_{\alpha / 2} \leq \frac{\widehat{\beta}-\beta}{\sqrt{\frac{4^{2}}{2 \sum_{i=1}^{n} x_{i}^{2}}}} \leq z_{\alpha / 2}\right)=1-\alpha
\end{gathered}
$$

Solving for β we get

$$
P\left(\widehat{\beta}-z_{\alpha / 2} \sqrt{\frac{4^{2}}{2 \sum_{i=1}^{n} x_{i}^{2}}} \leq \beta \leq \widehat{\beta}+z_{\alpha / 2} \sqrt{\frac{4^{2}}{2 \sum_{i=1}^{n} x_{i}^{2}}}\right)=1-\alpha
$$

That is, the $(1-\alpha) \cdot 100 \%$ confidence interval for β is

$$
\left[\widehat{\beta}-z_{\alpha / 2} \sqrt{\frac{4^{2}}{2 \sum_{i=1}^{n} x_{i}^{2}}}, \widehat{\beta}+z_{\alpha / 2} \sqrt{\frac{4^{2}}{2 \sum_{i=1}^{n} x_{i}^{2}}}\right]
$$

We have

$$
\widehat{\beta}=\frac{68586+72398-5 \cdot 982}{2 \cdot 97324}=0.699
$$

and

$$
\sqrt{\frac{4^{2}}{2 \cdot \sum_{i=1}^{n} x_{i}^{2}}}=\sqrt{\frac{4^{2}}{2 \cdot 97324}}=0.009
$$

thus we get

$$
[0.699-1.645 \cdot 0.009,0.699+1.645 \cdot 009]=[0.684,0.713] .
$$

Since $\mu_{0}=0.5$ is not inside the 90% interval we reject the null hypothesis.

Problem 4

a) In the case with a random sample $X_{1}, X_{2}, \ldots, X_{n} \sim n(x ; \mu, \sigma)$ where both μ and σ is unknown it is known that a $(1-\alpha) \cdot 100 \%$ prediction interval for a new observation X_{0} independent of $X_{1}, X_{2}, \ldots, X_{n}$ is given as

$$
\left[\bar{X}-t_{\alpha / 2, n-1} \sqrt{S^{2}\left(1+\frac{1}{n}\right)}, \bar{X}+t_{\alpha / 2, n-1} \sqrt{S^{2}\left(1+\frac{1}{n}\right)}\right]
$$

where $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ and $t_{\alpha / 2, n-1}$ is the $\alpha / 2$ critical value in the student t-distribution with $n-1$ degrees of freedom.
In our case a 95% prediction interval is

$$
\left[\frac{53.37}{10}-2.262 \cdot \sqrt{0.73^{2}\left(1+\frac{1}{10}\right)}, \frac{53.37}{10}+2.262 \cdot \sqrt{0.73^{2}\left(1+\frac{1}{10}\right)}\right]=[3.605,7.069]
$$

b) Under the null hypothesis we have

$$
Z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}} \sim n(z ; 0,1)
$$

We reject the null hypothesis on a significance level α if $Z \geq z_{\alpha}$. For a given alternative hypothesis $\mu=\mu_{0}+\delta$ the power of the test is

$$
1-\beta \geq P\left(\text { reject } \mathrm{H}_{0} \text { when } \mu=\mu_{0}+\delta\right)
$$

that is

$$
\begin{aligned}
\beta & \leq P\left(\text { do not reject } \mathrm{H}_{0} \text { when } \mu=\mu_{0}+\delta\right) \\
& =P\left(\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}} \leq z_{\alpha} \text { when } \mu=\mu_{0}+\delta\right) \\
& =P\left(\bar{X} \leq \mu_{0}+z_{\alpha} \frac{\sigma}{\sqrt{n}} \text { when } \mu=\mu_{0}+\delta\right) \\
& =P\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq \frac{\mu_{0}+z_{\alpha} \frac{\sigma}{\sqrt{n}}-\mu}{\sigma / \sqrt{n}} \text { when } \mu=\mu_{0}+\delta\right) . \\
& =P\left(Z \leq \frac{z_{\alpha} \frac{\sigma}{\sqrt{n}}-\delta}{\sigma / \sqrt{n}}\right) \\
& =P\left(Z \leq z_{\alpha}-\frac{\delta}{\sigma / \sqrt{n}}\right)
\end{aligned}
$$

We conclude that

$$
\begin{aligned}
-z_{\beta} & \geq z_{\alpha}-\frac{\delta \sqrt{n}}{\sigma} \\
\frac{\delta \sqrt{n}}{\sigma} & \geq z_{\alpha}+z_{\beta} \\
n & \geq\left(\frac{\left(z_{\alpha}+z_{\beta}\right) \sigma}{\delta}\right)^{2}
\end{aligned}
$$

In our case we have $\sigma=1, \alpha=0.05, z_{\alpha}=1.645, \beta=0.05, z_{\beta}=1.645$ and $\delta=0.5$, and get

$$
n \geq 43.3
$$

Eva needs to weight at least 44 salmons.

