1 CIRCUIT ANALYSIS AND POWER CALCULATIONS

Consider the voltage and current waveforms taken from a single-phase circuit in Figure 1.

Figure 1: Single-phase circuit and time-domain waveforms of voltage and current
a) Show that the phase angle difference between the voltage and current waveform is $\gamma=45^{\circ}$
b) Find an expression for the instantaneous power $p(t)$ consumed by the circuit. You don't need to simplify the expression.
c) Find the active power P and the reactive power Q consumed by the circuit (as usual, both P and Q should be average values). Is the circuit capacitive or inductive? Explain why.
d) Find the equivalent impedance $Z_{e q}$ of the circuit.

2 Step responses of RC-CIRCUIT

Consider the following circuit and numerical values:

$$
\begin{aligned}
& R_{1}=1 \Omega \\
& R_{2}=2 \Omega \\
& C=1 F
\end{aligned}
$$

In problem a) and b) we assume that the voltage across the capacitor is zero at $t=0$
a) Show that the transfer function between $i(t)$ and $v(t)$ is $H(s)=\frac{V(s)}{I(s)}=\frac{2 s+3}{2 s+1}$

In problem b), we apply a voltage step at $t=0$, i.e. $\quad v(t)= \begin{cases}0 V, & t<0 \\ 1 V, & t \geq 0\end{cases}$
b) Based on the transfer function from a), find $i(t)$ for $t \geq 0$

In problem c) we assume that $v(t)=100 \cos (3 t)$, and that the circuit has reached stationary/steady-state conditions.
c) Since the circuit operates in stationary conditions the current can be written as $i(t)=A \cos (3 t+\varphi)$. Find the numerical values for A [Ampere] and φ [radians].

3 Motors and Drive Systems

Part 1: Induction motor

a) Figure 2 shows a typical inductor motor curve relating the mechanical speed $\omega_{\text {mek }}$ to the mechanical torque $T_{m e k}$. Disregard mechanical gear and magnetic poles. Redraw the curve into your answer, and indicate the following items in the figure:
I. Synchronous speed ω_{s}
II. The speed at which the slip s equals 0 .
III. The speed at which the slip s equals 1.
IV. The normal operating range
V. The starting torque $T_{\text {start }}$

Figure 2: Induction motor mechanical torque versus mechanical speed
b) What is the torque of the machine when the mechanical speed equals synchronous speed?

Part 2: Wind turbine system

A wind turbine generator is directly connected to a power grid with fixed frequency $f_{\text {grid }}=50 \mathrm{~Hz}$ as shown in Figure 3. The system does not have any mechanical gear, but the generator is equipped with an unknown number of poles. $\omega_{m e k}$ is the mechanical speed of the turbine and generator.

Figure 3: Wind turbine generator connected to a power grid
c) Assume $\omega_{m e k}=7.85 \mathrm{rad} / \mathrm{s}$. How many poles is the generator equipped with?

In Figure 4 the relation between mechanical speed $\omega_{m e k}$ and the produced power $P_{\text {wind }}$ is presented for three different wind speeds $v=6,8,10 \mathrm{~m} / \mathrm{s}$.

Figure 4: Relation between wind turbine mechanical speed $\omega_{m e k}$ and produced power $P_{\text {wind }}$
d) Assume $\omega_{m e k}=7.85 \mathrm{rad} / \mathrm{s}$ and wind speed $v=6 \mathrm{~m} / \mathrm{s}$. Explain why the wind turbine configuration in Figure 3 is not optimal if the goal is to produce as much power as possible.
e) Sketch a wind turbine configuration that is able to extract the maximum available power at every wind speed. What kind of converter configuration should be used?

4 DC-MOTOR CONTROLLED BY A DC-DC CONVERTER

Consider the DC-motor controlled by a DC-DC converter in Figure 5.
We can use the average voltage V_{a} when calculating torque and speed of the DC-motor by using the DCmotor formulas (appendix). The term no-load is defined as the condition where the machine is producing zero torque, i.e. $T=0$
a) Assume the average terminal voltage $V_{a}=7.5 \mathrm{~V}$, and $R_{a}=0.1 \Omega$. What is the no-load speed of the DC-motor when the flux constant is equal to $K \varphi=0.1 \frac{\mathrm{rad}}{\mathrm{s}} \cdot \frac{1}{V}$?

The DC-DC converter consists of an ideal switch S and an ideal diode D. The variable k is called duty-cycle: $k=\frac{t_{o n}}{T_{s}}$, where $t_{o n}$ is the time period where the switch is closed (ON), and T_{s} is the period.
b) Consider the waveform for $v_{a}(t)$ presented in Figure 6. Find the expression of the average voltage $V_{a}=\frac{1}{T_{s}} \int_{0}^{T_{s}} v_{a}(t) d t$ as a function of the duty-cycle k and the DC-voltage $V_{d c}$

NB: Note the difference between the duty cycle k and the flux constant K, and also the difference between torque T and period T_{s}

Swich closed: $v_{a}=V_{d c}$
Switch open: $v_{a}=0$

Figure 5: DC-motor controlled by a DC-DC converter

Figure 6: Waveform of the voltage applied to the DC-motor terminals (v_{a})
c) Draw the two separate circuit diagrams corresponding to closed switch S and open switch S . Indicate the path of current flow in the two diagrams. Finally, show that the differential equation for i_{a} can be written as:

$$
\frac{d i_{a}}{d t}= \begin{cases}\frac{V_{d c}-R_{a} i_{a}-E_{a}}{L_{a}}, & \text { ON-state (S is closed) } \\ \frac{-R_{a} i_{a}-E_{a}}{L_{a}}, & \text { OFF-state (S is open) }\end{cases}
$$

Hint: Assume i_{a} is always positive, then the diode will always be on when the switch S is open.
Use the following numerical values in problem d):

$$
V_{d c}=15 V \quad R_{a}=0 \Omega \quad L_{a}=1 \mathrm{mH} \quad T_{s}=2 \mathrm{~ms} \quad k=0.5 \quad E_{a}=7.5 \mathrm{~V}
$$

d) Assume $i_{a}(0)=7.5 \mathrm{~A}$. Calculate $i_{a}(t)$ for $0 \leq t \leq T_{s}$. Make a sketch of the waveform.

NB: Note that we have assumed $R_{a}=0$ in order to simplify the calculations.

APPENDIX: FORMULAS

Inductor and capacitor

$v_{L}=L \frac{d i_{L}}{d t}, \quad i_{C}=C \frac{d v_{C}}{d t}, X_{L}=j \omega L, X_{C}=\frac{1}{j \omega C}$

Phasors and complex power

$X \cos (\omega t+\theta) \Leftrightarrow X e^{j \theta} \quad, \quad S=V I^{*}=P+j Q$
Electromagnetism:
$\varepsilon=N \frac{d \varphi}{d t}, N I=\mathfrak{R} \varphi, \mathfrak{R}=\frac{l}{\mu A}, \varphi=B A$
Trigonometrics

$$
\begin{aligned}
\cos (2 x) & =1-2 \sin ^{2}(x) \\
& =2 \cos ^{2}(x)-1 \\
\sin (2 x) & =2 \sin (x) \cos (x)
\end{aligned}
$$

Three-phase
$\left|V_{L L}\right|=\sqrt{3}\left|V_{p h}\right|$

Electrical machines

$f_{e l}=\frac{p}{2} f_{m e k}$
DC-machine
$E_{a}=K \varphi \omega \quad T=K \varphi I_{a}$
Induction (asynchronous) machine

$$
\omega_{m e k}=(1-s) \omega_{s}
$$

Mechanics

$P=T \omega \quad P=F \cdot v \quad v=\omega r \quad E_{k}=\frac{1}{2} m v^{2}$

Laplace transforms

Konstant: $\quad \mathcal{L}(K \cdot f(t))=K \cdot F(s)$
Sprangrespons: $\mathcal{L}(u(t))=\frac{1}{s}$
Eksponential: $\quad \mathcal{L}\left(e^{a t}\right)=\frac{1}{s-a}$
s-shift:

$$
\mathcal{L}\left\{e^{-a t} \cdot f(t)\right\}=F(s+a)
$$

Sinus:

$$
\mathcal{L}\{\sin (\omega t)\}=\frac{\omega}{s^{2}+\omega^{2}}
$$

Cosinus: $\quad \mathcal{L}\{\cos (\omega t)\}=\frac{s}{s^{2}+\omega^{2}}$

Dempa sinus: $\quad \mathcal{L}\left\{e^{-a t} \sin (\omega t)\right\}=\frac{\omega}{(s+a)^{2}+\omega^{2}}$

Dempa cosinus: $\mathcal{L}\left\{e^{-a t} \cos (\omega t)\right\}=\frac{s+a}{(s+a)^{2}+\omega^{2}}$

