1 CIRCUIT ANALYSIS AND POWER CALCULATIONS

Consider the voltage and current waveforms taken from a single-phase circuit in Figure 1.

Figure 1: Single-phase circuit and time-domain waveforms of voltage and current

- a) Show that the phase angle difference between the voltage and current waveform is $\gamma = 45^{\circ}$
- b) Find an expression for the instantaneous power p(t) consumed by the circuit. You don't need to simplify the expression.
- c) Find the active power *P* and the reactive power *Q* **consumed** by the circuit (as usual, both *P* and *Q* should be average values). Is the circuit capacitive or inductive? Explain why.
- d) Find the equivalent impedance Z_{eq} of the circuit.

2 STEP RESPONSES OF RC-CIRCUIT

Consider the following circuit and numerical values:

In problem a) and b) we assume that the voltage across the capacitor is zero at t = 0

a) Show that the transfer function between i(t) and v(t) is $H(s) = \frac{V(s)}{I(s)} = \frac{2s+3}{2s+1}$

In problem b), we apply a voltage step at t = 0, i.e. $v(t) = \begin{cases} 0V & , t < 0 \\ 1V & , t \ge 0 \end{cases}$

b) Based on the transfer function from a), find i(t) for $t \ge 0$

In problem c) we assume that $v(t) = 100\cos(3t)$, and that the circuit has reached stationary/steady-state conditions.

c) Since the circuit operates in stationary conditions the current can be written as $i(t) = A\cos(3t + \varphi)$. Find the numerical values for A [Ampere] and φ [radians].

3 MOTORS AND DRIVE SYSTEMS

Part 1: Induction motor

- a) Figure 2 shows a typical inductor motor curve relating the mechanical speed ω_{mek} to the mechanical torque T_{mek} . Disregard mechanical gear and magnetic poles. Redraw the curve into your answer, and indicate the following items in the figure:
 - I. Synchronous speed ω_s
 - II. The speed at which the slip *s* equals 0.
 - III. The speed at which the slip *s* equals 1.
 - IV. The normal operating range
 - V. The starting torque T_{start}

Figure 2: Induction motor mechanical torque versus mechanical speed

b) What is the torque of the machine when the mechanical speed equals synchronous speed?

Part 2: Wind turbine system

A wind turbine generator is directly connected to a power grid with fixed frequency $f_{grid} = 50 Hz$ as shown in Figure 3. The system does <u>not</u> have any mechanical gear, but the generator is equipped with an unknown number of poles. ω_{mek} is the mechanical speed of the turbine and generator.

Figure 3: Wind turbine generator connected to a power grid

c) Assume $\omega_{mek} = 7.85 \text{ rad/s}$. How many poles is the generator equipped with?

In Figure 4 the relation between mechanical speed ω_{mek} and the produced power P_{wind} is presented for three different wind speeds v = 6,8,10 m/s.

Figure 4: Relation between wind turbine mechanical speed $arphi_{mek}$ and produced power P_{wind}

- d) Assume $\omega_{mek} = 7.85 \text{ rad/s}$ and wind speed v = 6 m/s. Explain why the wind turbine configuration in Figure 3 is not optimal if the goal is to produce as much power as possible.
- e) Sketch a wind turbine configuration that is able to extract the maximum available power at every wind speed. What kind of converter configuration should be used?

4 DC-MOTOR CONTROLLED BY A DC-DC CONVERTER

Consider the DC-motor controlled by a DC-DC converter in Figure 5.

We can use the average voltage V_a when calculating torque and speed of the DC-motor by using the DCmotor formulas (appendix). The term *no-load* is defined as the condition where the machine is producing zero torque, i.e. T = 0

a) Assume the average terminal voltage $V_a = 7.5 V$, and $R_a = 0.1 \Omega$. What is the no-load speed of the DC-motor when the flux constant is equal to $K\varphi = 0.1 \frac{rad}{s} \cdot \frac{1}{V}$?

The DC-DC converter consists of an *ideal* switch *S* and an *ideal* diode *D*. The variable *k* is called *duty-cycle:* $k = \frac{t_{on}}{T_s}$, where t_{on} is the time period where the switch is closed (ON), and T_s is the period.

b) Consider the waveform for $v_a(t)$ presented in Figure 6. Find the expression of the average

voltage
$$V_a = \frac{1}{T_s} \int_0^{T_s} v_a(t) dt$$
 as a function of the duty-cycle k and the DC-voltage V_{dc}

NB: Note the difference between the duty cycle k and the flux constant K, and also the difference between torque T and period T_s

Figure 5: DC-motor controlled by a DC-DC converter

Figure 6: Waveform of the voltage applied to the DC-motor terminals (v_a)

c) Draw the two separate circuit diagrams corresponding to *closed switch* S and *open switch* S. Indicate the path of current flow in the two diagrams. Finally, show that the differential equation for i_a can be written as:

$$\frac{di_a}{dt} = \begin{cases} \frac{V_{dc} - R_a i_a - E_a}{L_a}, & \text{ON-state (S is closed)} \\ \frac{-R_a i_a - E_a}{L_a}, & \text{OFF-state (S is open)} \end{cases}$$

Hint: Assume i_a is always positive, then the diode will always be on when the switch S is open.

Use the following numerical values in problem d):

 $V_{dc} = 15 V$ $R_a = 0 \Omega$ $L_a = 1 mH$ $T_s = 2 ms$ k = 0.5 $E_a = 7.5 V$

d) Assume $i_a(0) = 7.5 A$. Calculate $i_a(t)$ for $0 \le t \le T_s$. Make a sketch of the waveform.

NB: Note that we have assumed $R_a = 0$ in order to simplify the calculations.

APPENDIX: FORMULAS

Inductor and capacitor

$$v_L = L \frac{di_L}{dt}$$
, $i_C = C \frac{dv_C}{dt}$, $X_L = j\omega L$, $X_C = \frac{1}{j\omega C}$

Phasors and complex power

$$X\cos(\omega t + \theta) \Leftrightarrow Xe^{j\theta}$$
, $S = VI^* = P + jQ$

Electromagnetism:

$$\varepsilon = N \frac{d\varphi}{dt}$$
, $NI = \Re \varphi$, $\Re = \frac{l}{\mu A}$, $\varphi = BA$

Trigonometrics

$$\cos(2x) = 1 - 2\sin^2(x)$$
$$= 2\cos^2(x) - 1$$

$$\sin(2x) = 2\sin(x)\cos(x)$$

Three-phase

$$\left|V_{LL}\right| = \sqrt{3} \left|V_{ph}\right|$$

Electrical machines

$$f_{el} = \frac{p}{2} f_{mek}$$

DC-machine

 $E_a = K\varphi\omega$ $T = K\varphi I_a$

Induction (asynchronous) machine

$$\omega_{mek} = (1-s)\omega_s$$

Mechanics

$$P = T\omega$$
 $P = F \cdot v$ $v = \omega r$ $E_k = \frac{1}{2}mv^2$

Laplace transforms

Konstant:
$$\mathcal{L}(K \cdot f(t)) = K \cdot F(s)$$

Sprangrespons: $\mathcal{L}(u(t)) = \frac{1}{s}$
Eksponential: $\mathcal{L}(e^{at}) = \frac{1}{s-a}$

$$\mathcal{L}\left\{e^{-at}\cdot f(t)\right\} = F(s+a)$$

Sinus:

s-shift:

$$\mathcal{L}\left\{\sin\left(\omega t\right)\right\} = \frac{\omega}{s^2 + \omega^2}$$

Cosinus:
$$\mathcal{L}\left\{\cos\left(\omega t\right)\right\} = \frac{s}{s^2 + \omega^2}$$

Dempa sinus:
$$\mathcal{L}\left\{e^{-at}\sin\left(\omega t\right)\right\} = \frac{\omega}{\left(s+a\right)^2 + \omega^2}$$

Dempa cosinus:
$$\mathcal{L}\left\{e^{-at}\cos\left(\omega t\right)\right\} = \frac{s+a}{\left(s+a\right)^2 + \omega^2}$$