
1  CIRCUIT ANALYSIS AND POWER CALCULATIONS 

Consider the voltage and current waveforms taken on a single-phase circuit: 

 

Figure 1: Time-domain waveforms of voltage and current in the circuit 

a) Show that the phase angle difference between the voltage and current waveform is 45o    

 
Solution: We observe in the figure that the time between peak voltage and peak current equals 

2.5t ms  . Alternatively, we could take the time between two zero-crossings, or between two minimum 

values, t  is the same in these cases. 
 
We also note that the total period for the sinusoid is 20T ms , which corresponds to a frequency of 

1
50f Hz

T
  . 

 
We can then find the angle as the ratio between t  and T multiplied with a full period of 360 degrees: 
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In the following problems we will also use radians: 45 rad
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b) Find an expression for the instantaneous power ( )p t  consumed by the circuit. You don’t need to 

simplify the expression 
Solution: We first write the time-domain functions for voltage and current: 

 ( ) 5cos 2 50 0 ( ) 3cos 2 50
4

v t t i t t


 
 

      
 

  

(Note the negative sign in the current phase angle, many students will do the mistake and use ‘+’) 
We can then find the instantaneous power directly as: 
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We can probably simplify this expression by using trigonometric identities, but this was not asked for. 
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Students that write   instead of 2 50   will not get full score.  
 

c) Find the active power P and the reactive power Q consumed by the circuit (as usual, both P and 
Q should be average values). Is the circuit capacitive or inductive? Explain why. 

Solution: This problem is recommended to be solved by phasor analysis. The current and voltage phasors 
are: 
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NB: Here we have used RMS-quantities. Students that use peak values for the current and voltage phasors 
gets full score IF they divide by two in the power calculation. Otherwise they get point reduction. 
 
The complex power is: 
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Finds the active and reactive power by splitting into real and imaginary parts: 
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The circuit is inductive, and we can reach this conclusion by observing either: 
- The reactive power is positive 
- The current waveform is lagging the voltage waveform 

 
d) Find the equivalent impedance 

eqZ  of the circuit. 

Solution: We can find the impedance by dividing the voltage phasor by the current phasor: 
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Here we would get the same answer if we used peak values instead of RMS-values. 

2 STEP RESPONSES OF RC-CIRCUIT 

Consider the following circuit with numerical values: 
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(The capacitance value of 2 F is unrealistically large, and is used for the purpose of simple expressions) 

In problem a) and b) we assume that the voltage across the capacitor zero at 0t    

a) Show that the transfer function between current and voltage is 
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Solution: We have that: 
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In problem b), we apply a voltage step at 0t   , i.e.: 
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b) Based on the transfer function from a), find ( )i t  for 0t   

Solution: Want to solve this problem by Laplace analysis. The voltage ( )v t  can be transformed into the 

Laplace-domain as a unit step: 
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We can then find the Laplace transformed current based on the transfer function: 
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We need to split this by partial fraction expansion: 
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This can be done in many ways, for example by setting right hand side on common denominator: 
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The solution is then given by: 
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We then have: 
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We can then write ( )i t  as the inverse Laplace transform of ( )I s : 
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NB: It is also equally correct to write simply 
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for 0t  . 

The waveform is plotted and validated against a simulation: 

 

 

In problem c) we assume that  ( ) 100cos 3v t t , and that the circuit has reached stationary/steady-state 

conditions. 

c) Since the circuit operates in stationary conditions it is possible to write the current on the form 

( ) cos(3 )i t A t   . Find the numerical values for A [Ampere] and   [radians].   

Solution: 

This is really a phasor analysis problem since we know the voltage phasor and need to find the current 

phasor. The transfer function H represents the impedance. 

Inserting numerical values for the transfer function, with 3 rad/s  :  
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 after some complex arithmetic. 

(Here we used the equivalent transfer function expression 
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We also have that the current in the frequency domain is equal to: 
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Simulation

i(t)=1/3+2/3e-1.5t



Then, 
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The angle in radians is 17.1 0.299
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We can then write the time-domain current as 

 ( ) 90.678cos 3 0.299i t t    

Hence, 90.678 , 0.299A     

3 MOTORS AND DRIVE SYSTEMS 

a) Figure 2 shows a typical inductor motor curve relating the mechanical speed mek  to the 

mechanical torque mekT . Disregard mechanical gear and magnetic poles. Redraw the curve into 

your answer, and indicate the following items in the figure: 

I. Synchronous speed s   

II. The speed at which the slip s equals 0. 

III. The speed at which the slip s equals 1. 

IV. The normal operating range 

V. The starting torque startT   

 

Figure 2: Induction motor mechanical torque versus mechanical speed 

Solution: See the following figure. The synchronous speed equals the speed where the slip is 0, while 

the speed is zero when the slip is 1. Starting torque is the torque right after start-up of the machine, i.e. 

when the speed is 0. The nominal operating range includes approximately the line segment illustrated 

by the ellipse. 
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b) What is the torque of the machine when the mechanical speed equals synchronous speed?  

Solution: The induction motor does not develop any torque at synchronous speed since the induced 

rotor field will rotate with the same speed as the stator field. The induced torque in an induction motor 

is always zero in this case. 

Part 2: Wind turbine system 

A wind turbine generator is directly connected to a power grid with fixed frequency 50gridf Hz   as 

shown in Figure 3. The system does not have any mechanical gear, but the generator is equipped with 

an unknown number of poles. 
mek  is the mechanical speed of the turbine and generator. 

 

Figure 3: Wind turbine generator connected to a power grid 

c) Assume 7.85 rad/smek  . How many poles is the generator equipped with? 

Solution: The number of poles can be found from the following relation: 
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Hence, the number of poles is 80. 

In Figure 4 the relation between mechanical speed 
mek  and the produced power windP  is presented for 

three different wind speeds 6,8,10 m/sv  .  

 

Figure 4: Relation between wind turbine mechanical speed mek  and produced power windP   
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d) Assume 7.85 rad/smek   and wind speed 6 m/sv  . Explain why the wind turbine configuration 

in Figure 3 is not optimal if the goal is to produce as much power as possible. 

Solution: The system is not optimal since the generator is operating at fixed speed determined by the 

grid frequency. We can see from the figure that we can extract more power at 6 m/sv   if we reduce 

the mechanical speed to ~5 rad/s”. We can also see that the optimal value for 
mek  depends on the 

wind speed. Therefore, a fixed-speed generator is not optimal. 

NB: Using a different number of poles can bring us to the optimal point for 6 m/sv  , but not for every 

wind speed. Students that propose this as a solution will therefore not get full score. 

e) Sketch a wind turbine configuration that is able to extract the maximum available power at 

every wind speed. What kind of converter configuration should be used? 

Solution: 

An example sketch is the following: 

 

To extract maximum available power, a variable-speed generator is needed. A variable-speed generator 

is equivalent to using a frequency converter between grid and generator. The student should mention 

“variable speed operation” or “frequency converter” or “AC-DC-AC converter” or “rectifier/inverter” etc. 

to get full score on the problem. 

The sketch should include a rectifier and an inverter. It is not necessary to use these exact words, but is 

should be clarified that we need two converters, one from AC-to-DC, and one from DC-to-AC. With this 

solution, we can choose the generator frequency independent of the grid frequency. 

Transformer and gearbox is not relevant, but students will not get minus points if they include them. 

4 DC-MOTOR CONTROLLED BY A DC-DC CONVERTER 

Consider the DC-motor controlled by a DC-DC converter in Error! Reference source not found.. The field 

winding is not shown in the figure, but it is assumed constant field voltage, hence the flux   is constant. 

We can use the average voltage aV  when calculating torque and speed of the DC-motor by using the 

DC-motor formulas (appendix). The term no-load is defined as the condition where the machine is 

producing zero torque, i.e. 0T    

a) Assume the average terminal voltage 7.5aV V , and 0.1aR   . What is the no-load speed of 

the DC-motor when the flux constant is equal to 0.1
s

K V
rad

  ? 
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Solution: In no-load, when the torque 0T   , the average armature current 0aI   from the relation 

aT K I . Then, a aE V . We also have 0.1aE K   .  

Since the duty cycle is 0.5k  , the average voltage 0.5 15 7.5a dcV kV V    . Then we can find the no-

load speed as: 

7.5
75 rad/s

0.1

V

Vs

rad

     

The DC-DC converter consists of an ideal switch S and an ideal diode D, and is connected to a DC voltage 

source. The resulting voltage waveform for 
av  is shown in Error! Reference source not found.. The 

variable k is called duty-cycle, and measures the time the switch is conducting divided by the entire 

period sT  : 

on

s

t
k

T
  , where ont  is the time period where the switch is closed (ON). 

  

Figure 5: DC-motor controlled by a DC-DC converter 

 

Figure 6: Waveform of the voltage applied to the DC-motor terminals (
av ) 

b) Consider the waveform for ( )av t  presented in Error! Reference source not found.. Find the 

expression of the average voltage 
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Solution: The integral is easy to solve if we view it as the area under the curve: 
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In other words, the average DC-motor terminal voltage is proportional to the duty-cycle and to the DC-

voltage. 

NB: Note the difference between the duty cycle k and the flux constant K, and also the difference 

between torque T and period sT   

c) Draw the two separate circuit diagrams corresponding to closed switch S and open switch S. 

Indicate the path of current flow in the two diagrams. Finally, show that the differential 

equation for 
ai  can be written as: 
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, OFF-state (S is open)

dc a a a

aa

a a a

a

V R i E

Ldi

R i Edt

L

 



 
 



  

Hint: Assume ai  is always positive, then the diode will always be on when the switch S is open. 

Solution: We first draw the circuit diagrams. With this way of drawing the circuit there is only one path 

for the current, indicated by the arrow. NB: Students can also draw other correct drawings where both 

the diode and switch is included, but must then include the correct current path. 

 

One approach is to find an expression for the voltage across the inductor aL  in the two states. 

ON-state: Since the switch is ON, the voltage a dcv V . We can then write Kirchoffs voltage law for the 

DC-motor circuit: 
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OFF-state: When the switch is OFF, we have 0av   since the diode is conducting the current. The 

Kirchoffs voltage law is then reduced to: 
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Use the following numerical values in problem d): 

15 0 1 2 0.5 7.5dc a a s aV V R L mH T ms k E V         

d) Assume (0) 7.5ai A . Calculate ( )ai t  for 0 st T  . Make a sketch of the waveform. 

NB: Note that we have assumed 0aR   in order to simplify the calculations. 

Solution: We will solve this problem by solving the differential equations from c). They become 

considerably easier to solve when we assume 0aR  : 

ON-state ( 0 t kT  ):  
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We can sketch the current as follows: 
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