
Solution – TTK4240 December 2017 

1 DC MOTOR  

The separately excited dc machine having the magnetization curve shown in Figure 1 is operating as a 

motor at a speed of 1500 rpm with a developed (shaft) power of 10 hp (1hp=735 Watt) and IF = 2.5 A. 

The armature resistance is RA=0.3 Ω and the field resistance is RF = 50 Ω.  

a) Explain shortly why the magnetization curve in Figure 1 is curved at high field current. You 

can disregard this phenomenon in your subsequent calculations. 

 

Answer: The magnetization curve starts to bend at high field current due to saturation in the iron 

core. When the iron is not saturated, the induced voltage is proportional to the field current. When the 

iron saturates, it becomes more and more difficult to increase the induced voltage. Eventually, the 

iron behaves like air (or vacuum). For standard iron this happens around B=2 Tesla. 

 

Students writing “the curve bends due to iron saturation” will get full score in most cases. 

 

 

b) Find the machine speed in radians per second 

 

Answer:  

𝜔 =
𝑛 .   2𝜋

60
=

1500 .2𝜋 

60
= 157 𝑟𝑎𝑑/𝑠 

c) In this operating condition, find the developed torque, the armature current IA and the voltage 

VT applied to the armature circuit. 

Answer:  

NOTE: During the exam, it was falsely informed that the speed n=1200 rpm in the magnetization 

curve should be 1500 rpm. Then the problem becomes easier to solve, as the induced voltage can be 

read directly from the figure. In the following solution, both approaches will be shown. 

 

Assuming the magnetization curve is given for 1500 rpm: 

Then, the induced voltage can be read directly as 145aE V .  

The armature current can be found based on the shaft power and induced voltage as:  
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Finally, the terminal voltage is 145 50.69 0.3 160.21T a a aV E R I V        

 

Assuming the magnetization curve is given for 1200 rpm: 

The method is identical, the only difference is that we need to find the induced voltage by the 

proportional relation: 
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Using the formulas above, the following results are obtained: 
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d) The field current is still IF = 2.5 A. Assume the terminal voltage is VT =127.5 V and the power 

supplied to the motor terminals is 3.2 kW. What is the speed of the machine? 

Answer: 

 

Assuming the magnetization curve is given for 1500 rpm: 

Since we know the terminal voltage and the power supplied to the terminals, we can find the induced 

voltage: 
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NOTE: Some students subtracted the field winding losses 
2 250 2.5 312.5F F FP R I W    , hence the 

power supplied to the armature winding is 3200 312.5 2887.5W  . This approach will give full 

score, and is maybe even more correct than the solution below. The problem description could be 

more clear to avoid this ambiguity. 

NOTE 2: Many students assumed that 3200 a aE I . This is not entirely correct since the power 

supplied to the terminals is not equal to the shaft power. These students got a small point reduction 

When the induced voltage is known, we can calculate the speed of the machine by the proportional 

relation: 
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Assuming the magnetization curve is given for 1200 rpm: 

The induced voltage is the same, we only need to modify the proportional relation: 
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NOTE 3: Rounding errors are not punished. If the answer is given in Hz or rad/s, this is of course not 

punished either. 

  



2 MAGNETIC CIRCUIT  

For the core shown in Figure 2, the reluctances of all three paths between points a and b are equal. 

ℛ1 = ℛ2 = ℛ3 = 106 (A·turns)/Wb Assume that all of the flux is confined to the core.  

 

a) Do the fluxes produced by i1 and i2 aid or oppose one another in path 1? In path 2? In path 3? 

Explain why.  

Answer: By applying the right hand rule, we find that both coils produce a flux in the clockwise 

direction (assuming current is positive in the defined direction). Hence, the fluxes aid each other in 

path 1 and 2, while they will oppose each other in path 3. 

  

b)  If a dot is placed on the top end of coil 1, which end of coil 2 should carry a dot? Explain 

why 

Answer:  

According to the dot convention, the dots are placed such that currents entering the dotted terminals 

produce aiding magnetic flux. By inspecting our core, we see that when both currents are entering the 

upper terminals of the coil, both fluxes will flow in the same (clockwise) direction. The dot on coil 2 

should therefore be placed on the upper end. 

 

This subproblem was one of the most difficult on the exam. In order to get any points on this 

subproblem, it is necessary to look either at the direction of fluxes, or on how the coils are wound to 

the core. Many students gave an answer only based on the defined direction of voltages and currents. 

This is incorrect, as the dot would move if the coil is wound in the opposite direction around the core. 

 

 

c) Should the mutual term for the voltages in the following equations carry a plus sign or a 

minus sign? Explain why 

Answer: This problem can be answered in two ways: 

1. If both currents are entering the dot (or leaving the dot), the mutual inductance terms will 

have positive sign. 

2. Since both currents with their defined direction produce a flux that is aiding the flux in the 

other coil, the mutual inductance will have positive sign. 

 

Comment: Many students answered “negative sign” in this problem since they placed the dot on the 

lower terminal in problem 2b. They will still get full score on 2c if their reasoning is correct.  

 

 

d) Determine the values of L1, L2, and M.  

 

Answer: 

NOTE: Unfortunately the reluctances was specified as 106 At/Wb instead of 10^-6 At/Wb. As a 

consequence, the resulting inductances become extremely high. Many students commented on this, 

and during the grading this has been taken into account. 

To solve this part of the problem, the superposition principle is applied. First, coil 1 is considered to 

be source while coil 2 is short circuited, and L1 can be calculated considering the totality of flux1. 

Then, coil 1 is short-circuited and coil 2 is considered to be the source and L2 can be calculated 

considering the totality of flux2. 
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The mutual inductance is defined as the flux linkage in one coil that is induced by the current from the 

other coil: 
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By inspecting the magnetic circuit in II) above, it is clear that the flux induced from coil 2 is divided 

in two equal branches, one going to path 1 and one to path 3.  
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Where 1 is the flux through coil 1 and 2  is the flux through coil 2. 

We can then find the mutual inductance as: 
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We can also solve the problem in other ways, e.g. by 2 2

1

N
M
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
 and assuming 2 0i  .  

 



3 WIND TURBINE CONTROL AND GRID CONNECTION 

The wind turbine is connected through the grid by a generator, rectifier and inverter. The mechanical 

rotational speed of the generator is gen , while the electrical frequency of the generator voltages is 

genf . The maximum available power from the wind is 
windP , while the actually produced power is 

genP . The generator is a synchronous generator with 60 poles. 

 

Figure 4: Wind power production curve as a function of generator speed (for three different wind speeds v) 

The curves in Figure  shows the wind power production genP  as a function of generator mechanical 

speed gen . 

a) If the wind speed is 10 m/s, what is the produced power if the generator electrical frequency 

is 18 Hzgenf  ? 

Answer: The mechanical frequency is then 
18

2 3.8 rad/s
30

gen    . Reading from the curve, the 

produced power is then approximately 1.6 MWgenP  . If a student makes correct calculation and 

read between 1.5 and 1.7 MW from the figure, he will get full score. 

 

b) Use Figure  to discuss the best strategy to control gen . Also, explain the concept of 

Maximum Power-Point Tracking (MPPT). 

 

Answer: We need to change the rotational speed if we want to extract the maximum amount of power. 

The peak point of each wind speed occurs at different rotational speed, therefore a control algorithm 

is required in order to always maximize power. Such control algorithm is called Maximum Power 

Point Tracking (MPPT). The control algorithm can be based either on measured wind speed, or it can 

employ various techniques to always track the optimal rotational speed.  

Most students got full score or almost full score on this problem. It is possible to elaborate more, e.g. 

by additional drawings, but this is not required. 

 



The maximum available power from the wind can be expressed by the formula 
3

windP kv , where k is 

a constant and v  is the wind speed. Assume 3480k  .  

c) Assume the turbine is controlled based on MPPT. What is the efficiency of the wind turbine 

for the three wind speeds in Figure ? Efficiency is expressed as (produced power)/(available 

power). 

Answer: The three maximum power points can be read from the figure, and the available power can 

be calculated from the formula above. The efficiency is then calculated in the table below: 

 

 v=6 m/s v=8 m/s v=10 m/s  

Produced power 0.4 MW 1.0  MW 1.8 MW 

Available power 0.7517 MW 1.7818 MW 3.48 MW 

efficiency 53.21 % 56.1 % 51.7 % 

 

Most students got full score on this problem. Erroneous readings in the range of +- 0.1 MW has not 

been punished as long as the reasoning is correct. 

 

d) The turbine produces 1.5genP MW . Neglect all losses in the generator, rectifier and inverter. 

The maximum allowed line current 
ai  is 350 A (RMS). Phase-to-phase grid voltage is 

3000V  (RMS). What is the maximum possible reactive power that the inverter can supply to 

the grid? You can assume a symmetrical three-phase system, hence the per phase equivalent 

can be used. 

Answer: We first find the maximum possible apparent power 

max max 3 3000 350 3 1.819 MWLLS V I         

Note that we need to multiply with 3  since we have the line-to-line voltage and the phase current. 

Alternatively, we could divide the line-to-line voltage with 3  to get the phase-to-neutral voltage, 

and then multiply with 3 phases to get the three-phase power. 

 

Since we know the active power, the maximum reactive power can be calculated as: 

2 2 2 2

max max 1.819 1.5 1.028 MVArQ S P       

This reactive power can be either inductive or capacitive, it is not relevant. 

It is considered a severe mistake in this subproblem to apply the factor 2  or 3  in an incorrect 

way. It is also a very severe mistake to subtract apparent and active power directly as 

max max 1.819 1.5Q S P     

  

  



4 PHASOR TRANSFORM  

 

a) Write the corresponding differential equations that models the RLC circuit in Figure 5. 

The source voltage is 𝑣(𝑡) = 𝑉𝑜𝑐𝑜𝑠(𝜔𝑡 + 𝛼𝑣) 

Answer: By applying KVL, we can obtain the following equation: 
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Both of the above equations give full score. 

 

b) Transform the differential equations into phasor domain, keep in mind that 

   cos Re j j tt e e     ,    cos Re je    

Answer: This problem was not well formulated, and this has been taken into account during grading. 

The intention was to transform the differential equation into phasor domain through fundamental 

definitions. However, many students transformed the equation into phasor domain directly using 

either Laplace or the well-known relations 
1

,
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L j L C
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
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  . As a consequence, we have 

been relatively kind with points on this subproblem, and it has also been given relatively low weight. 

Solution using fundamental definitions: 

Asuming linearity, the response of the circuit, ( ),  should have the same form
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Using the above defined phasors the differential equation in (2) can be written as:
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Writing the algebraic expression that results after the Phasor Transformation of the above equation we get 
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Solution using Laplace 

KVL in Laplace domain gives: 

1
( ) ( ) ( ) ( )V s RI s sLI s I s
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   , where initial conditions are disregarded since we are only interested 

in the resulting phasor domain equivalent. Replacing s j  gives: 
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Both approaches will give full score as long as each step in the derivation is correct. Also, students 

that found incorrect differential equation in 4a can still get full score if their derivation in 4b is 

correct (følgefeil is never punished). 

In the above equations the phasors are based on peak amplitudes (not RMS). Students that use RMS-

phasors also get full score.  

 

Based on the analysis of the expression obtained in b) demonstrate the following:  

 

c) Demonstrate that the impedance of the series RLC circuit is  𝑍 = 𝑅 + 𝑗(𝜔𝐿 −
1

𝜔𝐶
) and 

that the current phasor is 𝐼 =
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(𝑅+𝑗(𝜔𝐿−
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Answer:   

By using the expression in b), the impedance can be found as: 
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And the current can be found similarly: 
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Many students found these expressions even with wrong answers on problem 4a and 4b, and will then 

get full score. We have been relatively kind with points on this subproblem. 

d) Write the expression of the current in time domain,  i(t), as a function of the current 

phasor parameters found in part c) 

Answer: We already know the current in phasor domain: 
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This can be converted into time-domain directly using the inverse phasor transform: 
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It is also OK to write the expression directly from the phasor equation without using the formal 

definition with Re( )j tIe 
. Students with correct answer get full score. 

The following mistakes are considered minor, and will only give a small point reduction: 

 Missing v in the final expression 

 Sign error in one of the angles 

The following mistakes are more severe and will give a medium point reduction 

 Missing t  in the final answer 

 Incorrect use of 2  in the final answer 

Students that include j in the final answer will get a large point reduction since it does not make sense 

to have a complex number in a time-domain expression. 

 

 


