1 RLC CIRCUIT

Figure 1 shows a RLC-circuit. The input voltage is $v_{\text {in }}(t)$, while the output voltage $v_{o}(t)$ is defined as the voltage across the LC-branch.

Assume $v_{i n}(t)=10 \cos (\omega t)$ throughout the entire problem. $R=1 \Omega$ and $L=1 \mathrm{mH}$, while C is unknown. We will first assume this circuit is used as a filter with input $v_{\text {in }}(t)$ and output $v_{o}(t)$, and $H(s)=\frac{V_{o}(s)}{V_{\text {in }}(s)}$

Assume now the frequency is 50 Hz . If you did not solve b), use $C=1 m F$ in problems c) and d).
c) How much active and reactive power is supplied from the voltage source? Is the circuit inductive or capacitive (give reasons for your answer)?

Assume now we connect another impedance $Z_{\text {load }}$ in parallel to the LC branch as shown in Figure 2.

Figure 2 - Adding load to Figure 1

2 DC-MOTOR DRIVEN BY bATTERY AND DC/DC CONVERTER

The figure shows a battery with voltage $V_{d c}$ connected to a DC-motor with resistance R_{a} and induced voltage E_{a} through a DC/DC-converter. The DC/DC-converter control system can set the required dutycycle D defined as $D=\frac{V_{a}}{V_{d c}}$. The mechanical load has a load torque T_{L}.
a) The field winding is not shown in the figure. Make a complete schematic of a shunt-excited DCmachine, including the field winding resistance R_{f} and field winding inductance L_{f}.

Assume in b) and c) that $T_{L}=k_{L} \omega_{m}$, where ω_{m} is the rotational speed of the shaft. The system has no mechanical gearbox. In problems b) and c), assume the motor operates in steady-state, i.e. no acceleration. Some useful formulas for the DC-motor is included in appendix.

Numerical values: $R_{a}=0.1 \Omega, k \varphi=0.3 \frac{\mathrm{Vs}}{\mathrm{rad}}, k_{L}=0.1 \frac{\mathrm{Nms}}{\mathrm{rad}}$ and $V_{d c}=100 \mathrm{~V}$
b) What duty-cycle is needed in order to have a shaft speed of $\omega_{m}=200 \mathrm{rad} / \mathrm{s}$?
c) Find an expression for the motor speed ω_{m} expressed by $k_{L}, D, V_{d c}, k, R_{a}$, as well as the motor constant k and the flux φ (these are the only variables you should include in the expression)

Assume now that the load torque is zero, $T_{L}=0$. Assume also the system has a total moment of inertia equal to J. At $t=0$, the $\mathrm{DC} / \mathrm{DC}$-converter makes a step in duty cycle from $D=0$ to $D=D_{0}$.
d) Find the expression for the motor speed $\omega_{m}(t)$ for $t \geq 0$ (only variables, no numerical values).

3 CIRCUIT CALCULATIONS INCLUDING IRON CORE

Figure 3 - Voltage source, iron core and load resistance
A resistor is connected to a voltage source through an iron core as presented in Figure 3. The core has $N=3$ windings on the voltage source side, and a single winding at the load resistor side. We make the following assumptions:

- All induced magnetic field is kept within the core
- The iron is ideal, i.e. $\mu_{r}=\infty$
- The core will not saturate
a) Explain why we can treat the iron core as an ideal transformer with ratio N.
b) If i_{s} is positive, is i_{R} positive or negative? Explain why.

If the frequency is $f=50 \mathrm{~Hz}, v_{s}=10 \mathrm{~V}(R M S)$ and $R_{L}=0.5 \Omega$, the current i_{s} has an RMS-value of 2 A .
c) Find the numerical value of the inductor L
d) Derive an expression for the power consumed by the resistor R_{L}. No numerical values, only with symbols ($v_{s}, L_{s}, N, R_{L}, f$)

4 DIODE RECTIIIER

Figure 4 shows a diode rectifier where the AC-voltage is a triangular wave. In problem a) and b), the DCside is a constant current source $I_{d c}$, while in problem c) and d) it is represented by a resistor R.

Figure 4: Diode rectifier supplied by a triangular voltage source. Constant DC-current

Assume $I_{d c}=5 \mathrm{~A}$
a) Find and sketch the DC-side voltage $v_{d c}(t)$ and the AC-side current $i_{a c}(t)$ for $0 \leq t \leq 0.04 s$.
b) What is the average power delivered from the AC voltage source?

Figure 5 - Diode rectifier supplied by a triangular voltage source. Resistive DC-load
Now the constant current source is replaced with a resistor $R=2 \Omega$ as shown in Figure 5 .
c) Find and sketch the DC-side current $i_{d c}(t)$ and AC-side current $i_{a c}(t)$ for $0 \leq t \leq 0.04 s$.
d) What is the average power delivered from the $A C$ voltage source?

DC-DC converters

APPENDIX: FORMULAS

Inductance and capacitance

$v_{L}=L \frac{d i_{L}}{d t}, \quad i_{C}=C \frac{d v_{C}}{d t}, X_{L}=\omega L, X_{C}=\frac{1}{\omega C}$

Phasors and complex power

$X \cos (\omega t+\theta) \Leftrightarrow X e^{j \theta} \quad, \quad S=V I^{*}=P+j Q$

Electromagnetism:

$$
\begin{aligned}
& \varepsilon=N \frac{d \varphi}{d t}, N I=\mathfrak{R} \varphi, \mathfrak{R}=\frac{l}{\mu_{0} \mu_{r} A}, \\
& \varphi=B A, \mu_{0}=4 \pi \cdot 10^{-7}
\end{aligned}
$$

Trigonometrics

$$
\begin{aligned}
& \cos (2 x)=1-2 \sin ^{2}(x) \\
& \sin (2 x)=2 \sin (x) \cos (x)
\end{aligned}
$$

Three-phase

$$
\left|V_{L L}\right|=\sqrt{3}\left|V_{p h}\right|
$$

Electrical machines

$f_{e l}=\frac{p}{2} f_{\text {mech }}$

Cut-off frequency

$\left|H\left(j \omega_{c}\right)\right|=\frac{\left|H_{\max }\right|}{\sqrt{2}}$

DC-machine

$$
E_{a}=K \varphi \omega \quad T_{a}=K \varphi I_{a}
$$

Induction (asynchronous) machine

$$
\omega_{\text {mech }}=(1-s) \omega_{s}
$$

Buck (step-down): $D=\frac{V_{\text {out }}}{V_{\text {in }}}$
Boost (step-up): $\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{1-D}$

Inverters

Single-phase: $m=\frac{\sqrt{2}\left|V_{a c}\right|}{V_{d c}}$
Three-phase: $m=\frac{2 \sqrt{2}\left|V_{L L}\right|}{\sqrt{3} V_{d c}}$

Mechanics

$P=T \omega \quad P=F \cdot v \quad v=\omega r \quad E_{k}=\frac{1}{2} m v^{2}$
$T_{\text {mot }}-T_{\text {load }}=J \frac{d \omega}{d t}$

Laplace transforms

Constant: $\quad \mathcal{L}(K \cdot f(t))=K \cdot F(s)$

Step response: $\mathcal{L}(u(t))=\frac{1}{s}$
Exponential: $\quad \mathcal{L}\left(e^{a t}\right)=\frac{1}{s-a}$
s-shift: $\quad \mathcal{L}\left\{e^{-a t} \cdot f(t)\right\}=F(s+a)$

Sine:

$$
\mathcal{L}\{\sin (\omega t)\}=\frac{\omega}{s^{2}+\omega^{2}}
$$

Cosine:

$$
\mathcal{L}\{\cos (\omega t)\}=\frac{s}{s^{2}+\omega^{2}}
$$

Damped sine: $\quad \mathcal{L}\left\{e^{-a t} \sin (\omega t)\right\}=\frac{\omega}{(s+a)^{2}+\omega^{2}}$

Damped cosine: $\mathcal{L}\left\{e^{-a t} \cos (\omega t)\right\}=\frac{s+a}{(s+a)^{2}+\omega^{2}}$

