

NB! Dette oppgavesettet (hvitt papir) skal studenten levere inn som eksamensbesvarelse
NTNU
The Norwegian University of
Science and Technology
Department of telematics

Side 1 av 14

Engelsk
Faglig kontakt under eksamen:
Navn: Leif Arne Rønningen
Tlf.: 92665
Det vil bli besøk på salene i perioden kl. 10-12.
EKSAMEN I EMNE SIE5003 KOMMUNIKASJON - TJENESTER OG NETT EKSAMEN I EMNE SIE5003 TELEMATIKK - TJENESTER OG NETT
8. aug 2001

KI: 0900 - 1300

Sensurdato: 29 aug 2001

Hjelpemidler:
A1 - kalkulator ikke tillatt
Ingen trykte eller håndskrevne hjelpemidler

区

Rules

This problem set (white paper) shall be delivered as your answer. The yellow set shall be used for scratching, and you shall take it with you after the examination (it will not be evaluated).

The following rules are valid for the white problem set:
The student number shall be written on all pages with digits. In addition, on this page (2) each digit shall be checked in the boxes below the digits for control (one mark per column).

The sheets will be read optically. Follow the rules below to avoid wrong interpretations.

Use blue or black ball-pen, not a pencil.
Check the boxes as clear as you can, like this:

If you need to correct, ask for a new sheet.
You are not allowed to use rubber or other correcting means, for example scratching.
Do not write outside the box fields or the student number fields.
A sub-problem may include one or more box fields. Each field will be evaluated individually, and may have different checking rules. A field shall in some cases be checked with only one mark, and in other cases with none, two or more marks. See the text of each problem. The lowest score for each field is 0 points. If the problem asks for only one check per field, you obtain 0 points if two or more boxes are checked. If the problem asks for two or more marks per field the following rules apply: Each correct mark gives 1.0 point. Missing marks give 0 points. One incorrect mark per field is ignored. One additional incorrect mark per field give 0.5 points discount, two additional incorrect marks give 1.5 points discount, and so on progressively. If you are unsure, it could be advantages not to check, rather than to check randomly.

1: THE PHYSICAL LAYER (25\%)

1.1 GENERAL MULTIPLE CHOICE

a) Check the 'agree' OR the 'disagree' box for each question:

agree	disagree	A twisted pair cable of 100 meters can be used for data rates at 1 to
\square	\square	2 Gbps.
\square	\square	Frequency domain signals can be represented in the time domain by Fourier Series.
\square	\square	Shannon's theorem on data rates takes noise into account.
\square	\square	ATM is circuit switched.
\square	\square	GSM is an analog cellular system
\square	\square	With packet switching, there is no limit on block size, witch means that routers must have disks to buffer long blocks.
\square	\square	A virtual circuit is connectionless
\square	\square	Narrowband ISDN is based on ATM technology.
\square	\square	A virtual circuit is connectionless
\square	\square	For 1-km coaxial cable a data rate of 1 to 2 Gbps is feasible.

b) GSM uses: (check one box)
$\square \quad$ FDM (frequency division multiplexing) onlyTDM (time division multiplexing) onlyBoth FDM and TDMWDM (wavelength division multiplexing) onlyBoth WDM and TDM
c) Narrowband ISDN uses: (check one box)

Circuit switching only
Packet switching only
Message switching only
Cell switching only
Circuit switching and packet switching

d) WDM (Wavelength Division Multiplexing) is a variation of: (check one box)TDM
GSM
UMTS
FDM
None of above
e) Error control in the link layer is not needed when the physical layer consist of: (check one box)Twisted pair cableFiber cableRadio transmissionInfraredCoaxial cable

1.2 CODING

Coding. The amplitude-phase diagram (polar coordinates) below shows how amplitude shift keying (ASK) and phase shift keying (PSK) can be used simultaneously. How many bits can be coded on each physical symbol in this case? (check one box)8 bit

3 bit
4 bit
16 bit
1 bit

1.3 SIGNALS

Below six different signals are shown. Discrete points can only lie on the grid, all other points represent continuous values.
(check one box for each signal)

2: MEDIUM ACCESS LAYER (25\%)

2.1 GENERAL MULTIPLE CHOICE

a) Check the 'agree' OR the 'disagree' box for each question:

agree	disagree	
\square	\square	UMTS uses broadcast channels
\square	\square	GSM uses the slotted ALOHA principle
\square	\square	MAC (Medium Access Control) uses point-to-point connections
\square	\square	Large Ethernets may use repeaters
\square	\square	Token ring networks have monitor stantions that oversees the ring
\square	\square	Bridges cannot be used between different 802.x networks
\square	\square	Ethernet uses twisted pair cabling only
\square	\square	Backward learning is typical to transparent bridges
\square	\square	FDDI uses LED due to cost and compatibility with user workstations
\square	\square	Dynamic FDM channel allocation is efficient when the number of stations is small

b) What is true about ALOHA? Check the 'agree' OR the 'disagree' box for each question:

ALOHA is a contention system
In slotted ALOHA a computer may start sending at fixed points in time
In ALOHA the risk of collision is accepted
ALOHA checksum help distinguish between a total loss and a near miss
Pure ALOHA has better channel utilisation than slotted ALOHA
c) What is true about CSMA? Check the 'agree' OR the 'disagree' box for each question:

agree	disagree	
\square	\square	Due to propagation delays 1-persistent CSMA may lead to collisions
\square	\square	Compared with 1-persistent CSMA, nonpersistent CSMA has longer delays
\square	\square	Compared with 1-persistent CSMA, nonpersistent CSMA has better channel utilisation
\square	\square	P-persistent CSMA allways waits until next slot with probability (1-p)
\square	\square	Using CSMA; the best channel utilization is 1/e
\square	\square	

2.2 ENCODING

This task has three subtasks. Each subtask starts with a sequence that you shall decode. Express your interpretation through the check boxes below each sequence figure: Check only one box (0 or 1) for each column.
a) Signal encoded with Manchester encoding

b) Signal encoded with differential Manchester encoding

c) Signal encoded with binary encoding

2.3 CDMA

a) The chip sequence $\{+1,-1,+1,+1\}$ and $\{-1,-1,+1,-1\}$ are sent synchronously from two sources onto a medium and are added. The chip elements are represented by either +1 or -1 volt. Which voltages can be measured in the medium? (check one box)$\{+0,-2,+2,+0\}$
$\{+0,-1,+3,-2\}$
$\{-2,-2,+0,+2\}$
$\{+2,+2,+1,+2\}$
$\{-2,+2,+0,-2\}$
b) A receiver listens (measures) on the medium described in problem 4.3 b), and wants to receive from the source sending the chip-sequence $\{-1,-1,+1,-1\}$. The receiver finds the right source by calculating the inner product, denoted $\} *\}$ below (check one box).

$$
\begin{aligned}
& \{+1,-1,+1,+4\}^{*}\{-2,+2,+0,-1\} \\
& \{-2,+2,+0,-2\}^{*}\{+1,-1,+1,+1\} \\
& \{-1,-1,+3,-2\}^{*}\{-1,-1,+1,-1\} \\
& \{-2,+2,+0,-2\}^{*}\{-2,+2,+0,-2\} \\
& \{+0,-2,+2,+0\}^{*}\{-1,-1,+1,-1\}
\end{aligned}
$$

3: THE NETWORK LAYER (12.5\%)

a) Check the 'agree' OR the 'disagree' box for each question:

agree	disagree	
\square	\square	A connectionless service has no flow control in the network layer.
\square	\square	ATM never uses virtual circuits.
\square	\square	It is possible to run IP over ATM.
\square	\square	Adaptive routing: routing decision is usually changed according to
\square	\square	traffic variations
\square	\square	Datagrams always follow the same route.
\square	\square	Repeaters queue incoming packets
\square	\square	Gateways are only used on the network layer.
\square	\square	Fragmentation means that packets are divided into smaller pieces.
\square	\square	A firewall intends to protect a computer against unwanted hacking.

b) IPv4 (check one box)

$\square \quad$ Doesn't support multicast

Supports 48 bits IP addresses.\square Uses datagrams.
$\square \quad$ Is connection oriented.Uses packets of typically 64 K bytes length.
c) IPv6 (check one box)
$\square \quad \mathrm{IPv} 6$ has better multimedia support than IPv4.IPv6 has a checksum field in the header.IPv6 uses addresses with format xxx.xxx.xxx.xxx (xxx $=0-255$)IPv6 is significantly slower than IPv4.IPv6 has ten times the address space of IPv4

d) Fragmentation (check one box)
\square An IPv4 packet can at most have 16 fragments IPv6 supports fragmentation.
In IPv4 all fragments must be a multiple of 8.A fragmented packet cannot be reconstructed.
\square
Fragments do not need numbering.

4: TRANSPORT LAYER (12.5\%)
a) Check the 'agree' OR the 'disagree' box for each question:

agree	disagree	One of the transport layer's functions is to handle QoS.		
\square	\square	Using gigabit networks: the round trip delay is negligible due to high speed.		
\square	\square	\square		Isochronous transfer: transfer without any time requirements to the
:---				
information units.				

b) ATM AAL (check all that apply)

(AAL) 5 is functionally similar to UDP. Provides 100% reliable end-to-end connections. Supports both real-time and non-real-time transfer Uses the IP addressing scheme Can be either connectionless or connection oriented
c) UDP (check all that apply)Is connectionless.Is an application layer protocol.
$\square \quad$ Guaranties QoS.Is used in many applications with one request and one response.Provides flow control.

d) TCP (check all that apply)

Connection is uniquely identified by [A-socket address, B-socket address]
\square
Supports Urgent DataUses 3-way handshaking for connection establishment.
\square
Uses full duplex connections.
\square
Uses slow start to prevent congestion.

5 APPLICATION LAYER (25\%)

a) Check the 'agree' OR the 'disagree' box for each question:

agree	disagree	
\square	\square	ALOHA is an application layer protocol
\square	\square	HTTP 1.1 can be used with Secure Socket Layer (SSL)
\square	\square	Web browsers normally act as clients
\square	\square	Mpeg is a MIME subtype
\square	\square	POP3 does not move messages to the user's personal machine
\square	\square	SMTP uses UDP
\square	\square	SMTP is an ASCII based protocol
\square	\square	A Media Player does not provide video decompression
\square	\square	Blind carbon copy (Bcc)-recipients are exposed to all recipients
\square	\square	Using a Key Distribution Center guarantees secure authentication

b) Check all allowed email-addresses:

\square	post@item.no
\square	ntnu.fim.no
\square	no.ntnu.fim
\square	fim.ntnu.no
\square	emil@it.cjb.edu.jp
\square	emil@ ntnu
\square	www.net
\square	emil@ilb.com
\square	ntnu/no.com
\square	no.com/ntnu

d) Check all allowed DNS name of hosts:
post@item.no
ntnu.fim.no
no.ntnu.fim
fim.ntnu.no
emil@it.cjb.edu.jp
emil@ntnu
www.net
emil@ilb.com
ntnu/no.com
no.com/ntnu

e) Check all boxes that apply to DNS:Nonoverlapping name space zonesResolvers which look up remote names
\square Developed for ARPANET
$\square \quad$ Uses both UDP and TCPISO defined country codesCase sensitive
f) Check all boxes that apply to PGP:Uses DESUses IDEAUses RSAUses Message Digests
$\square \quad$ PGP means Privacy Guarded Post
$\square \quad$ PGP means Privacy Guaranteed Protocol
$\square \quad$ PGP means Pretty Good PrivacyPGP means Personal Guaranteed Post
e) MIME means (check one box only):

Multi InterMedia EnhancementMultimedia Internet EncodingMultipurpose Internet Mail ExtensionsMulticoded InterMail EnhancementMulti-Integrated Media Extensions

