
Side 1 av 17 

  

Norges teknisk-naturvitenskapelige universitet 
Institutt for telematikk 
 

 
 
 

LØSNINGSFORSLAG EKSAMENSOPPGAVE I TTM4115 – 
SYSTEMERING AV DISTRIBUERTE SANNTIDSSYSTEMER 

SOLUTION PROPOSAL EXAM TTM4115 ENGINEERING 
DISTRIBUTED REAL-TIME SYSTEMS 

 
 
 

Contact person/Faglig kontakt under eksamen: Rolv Bræk 

Phone/Tlf.:      415 44 605 

 

Exam date/Eksamensdato:    01. juni 2012 

Time/Eksamenstid:     09:00-13:00 

Credits/Studiepoeng:    7,5 SP 
Remedies/Tillatte hjelpemidler:                             A: All written and handwritten examination              
                                                                                           support materials are permitted. All   
                                                                                           calculators are permitted  

 A: Alle trykte og                                                                                    
håndskrevne hjelpemidler tillatt. Alle   

                                                                                           kalkulatorer tillatt 
 

Languages/Språkform: 

Antall sider bokmål:     1 

Number of pages in English:   1 

Tal på sider nynorsk:    0 

Attachment/Antall sider vedlegg:   7 

 

Results/Sensurdato1:     22. juni 2012 

 

                                                
1  Merk! Studentene må primært gjøre seg kjent med sensur ved å oppsøke sensuroppslagene.  



Side 2 av 17 

  

Bokmål (Eksamen utgjør 75% av sluttkarakteren.)  
Oppgavene referer seg til systemet som er beskrevet i vedlegg. Studer vedlegget først.  
Oppgave 1. (30%) SDL 

1. Definer Carpool systemet formelt som en SDL systemtype med Parking Station 
Terminal som en blokktype definert innenfor Carpool systemet. Ta med signaler på 
kanalene og signaldefinisjoner. (Ta bare med blokkene vist i Figur 1.) 

2. Definer oppførselen til Central Station som en SDL prosessgraf (tilstandsdiagram) 
som tilfredsstiller alle cs rollene referert i Figur 2 og detaljert i Figur 3 og 4. Ta med 
datadeklarasjoner og operasjoner (du kan bruke Java eller pseudokode til dette). 

3. Definer oppførselen til ctr rollen i ReturnKey kollaborasjonen som en SDL 
sammensatt tilstand (composite state) som tilfredsstiller sekvensdiagrammet i Figur 9. 
Ta med nødvendige datadeklarasjoner og operasjoner.  

4. Anta at alle ctr rollene som spilles av PSControl, se Figur 5, er definert som 
sammensatte tilstander (composite states). Definer oppførselen til PSControl som en 
SDL prosessgraf (tilstandsdiagram) som benytter disse tilstandene. 
 

Oppgave 2. (25%) Aktivitetsdiagram (Arctis form) 
1. Konstruer en Arctis byggeblokk (building block) for ctr rollen i ReturnKey 

kollaborasjonen. Den skal tilfredsstille sekvensdiagrammet i Figur 9. (Samme rolle 
som i oppgave 1.3 over.) Anta at hver melding i sekvensdiagrammet representeres 
med en tilsvarende pin. Den indre aktivitetsflyten skal defineres. 

2. Anta nå at hver av ctr rollene som spilles av PSControl er pre-definert som en Arctis 
byggeblokk med pins for hver av meldingene den mottar og sender. Konstruer en 
Arctis byggeblokk for PSControl som viser kontrollflyten mellom disse pre-definerte 
blokkene. Pinner (pins) som representerer meldinger til og fra de predefinerte 
blokkene skal vises men trenger ikke forbindes. 

3. Forklar bruken av hendelse-mottak-aksjoner (receive event actions) til å fange opp 
hendelser fra brukergrensesnitt. Illustrer med et eksempel fra Panel der du antar at 
Panel er en GUI blokk. 

 
Oppgave 3. (20%) Validering 

1. Forklar hva som kreves for at en SDL proessgraf (tilstandsdiagram) kan sies å 
tilfredsstille et sett med sekvensdiagram. 

2. Forklar hva som menes med blandet initiativ (mixed initiative) og hvorfor det er viktig 
å kunne identifisere slike. 

3. Forklar hva som menes med input konsistens og hvorfor det er viktig å sikre input 
konsistens. 

4. Hva er formålet med ESM i Arctis? 



Side 3 av 17 

  

English (The exam counts 75% towards the final grade.)  
The questions refer to the system described in the appendix. Study the appendix 
first. 
Question 1. (30%) SDL  

1. Define the Carpool system formally as an SDL System type with the Parking Station 
Terminal as a Block type defined within the scope of the Carpool system. Include 
signals on the channels and signal definitions. (Consider only the blocks shown in 
Figure 1.)  

 

Central
Station

ps[1..*]:
Parking
Station

Terminal

uc[1..*]:
User
Client

user

PS
ControlPanel

Key
Safe

Card
Reader

Block type Parking Station Terminal

CS

System type Carpool 

C

K

D

User
Client

Card

Display

Keys

C

D

K

CS

signallist sl1=Book, Select, Cancel;
sl2= Grant, Alternatives;

sl3=ReservationGot;
sl4= GetReservation, CheckOut, CheckIn;

....
Signal Book(Reservation), Select(Reservation), Cancel

(Reservation), ReservationGot(Reservation), 
GetReservation(CardId), CheckedOut(Reservation), ....;

Parking
Station

Terminal

[(sl2)]

[(sl1)][(sl3)]
[(sl4)]

[(sl4)][(sl3)][(sl8)]

[(sl7)]

[(sl6)]
[(sl5)]

[(sl10)]
[(sl9)]

 
Some signals and signal definitions have been omitted. This is sufficient for full score. 
One may choose either to use 3 gates towards the user interface as here, or just one, 
but shall be done in a consistent way 
PST not defined=-3 



Side 4 av 17 

  

Gates not defined= -2 
Gate references missing=-1.  
Signals not defined=-1 
Substantial SDL syntax errors, e.g two way signal lists=-1 
Typereferneces missing =-1 

 
 

2. Define the behaviour of the Central Station as an SDL process graph (state diagram) 
that satisfies all the cs roles referenced in Figure 2 and detailed in Figure 3 and 4. 
Include data declarations and operations (you may use Java or pseudo code for this). 
 

     Get
Reservation

(cardId)

Ready

ReservationGot
(reservation)TO 

SENDER

Ready

reservation =  
reservations.find(cardId)

    CheckedOut
(reservation)

Ready

car=reservation.car
car.status =  busy

    CheckedIn
(tripdata)

Ready

car=tripdata.car
car.status =  available

DCL reservation Reservation, cardId CardID, tripData TripData, car Car, cars

Book
(reservation)

Ready

avail=cars.checkAvail
(reservation)

Grant TO 
SENDER

Ready

Alternatives TO 
SENDER

Select
(reservation)

Ready

...

Grant TO 
SENDER

Cancel
(reservation)

Ready

..

 
++add declarations and operations 
Needs to be stateless in order to handle several customers in parallel.  
Needs variables to hold reservation lists while waiting for option selection. 
Stateful behaviour=-1,5 
None in stead of decisions=-1,5 
Missing or unclear actions=-1 
No data dcl and no actions=-3 
Missing data dcl=-1,5 

3. Define the behaviour of the ctr role of the ReturnKey collaboration as an SDL 
composite state that satisfies the sequence diagram in Figure 9. Include the necessary 
data declarations and operations. 
 



Side 5 av 17 

  

Ready

GetSlot(slot)TO  
Safe

SlotReady

Opening

Open TO  Safe

Opened

Close TO  Safe

WaitKeys

KeysDropped

Closing

Closed

State ReturnKey CTR

 
Note that the first sending should be done on the initial transition! 
Using none or an unspecified signal to trigger the first sending=-1 
Missing exit=-1,5 
Minor design flaws=-1 
Major SDL error=-1,5-2 
Stateless=-1 
 

4. Assume that all the ctr roles played by the PSControl, see Figure 5, are defined as 
SDL composite states. Define the behaviour of the PSControl as an SDL process 
graph using these composite states. 



Side 6 av 17 

  

ReadCard 
CTR

Get
Reservation 

CTR

PickUp
CTR

[reservation.status = reserved]

[reservation.status = started]

GiveKey
CTR

Checkout
CTR

Go
CTR

Return
CTR

ReturnKey
CTR

CheckIn
CTR

Thanks
CTR

Process PSControl

 
 
Note that the diagram shall show the ordering of the roles! 
No ordering defined=-5 
Showing inputs that should be in states =-1 
showing none=-1 
not using the state defined in q1,3=-1 
not using composite states=-2 (but otherwise the right flow) 
 
Question 2. (25%) Activity diagrams (Arctis style) 

1. Design an Arctis building block for the ctr role of the ReturnKey collaboration. It shall 
satisfy the sequence diagram in Figure 9. (Same role as in question 1.3 above.) 
Assume that each message in the sequence diagram maps to a corresponding pin. The 
internal activity flow shall be defined. 
 



Side 7 av 17 

  

GetSlot:slot

SlotReady

Open

Opened

KeysDropped

Close

Closed

getSlot

ReturnKey-CTR

 
We have here assumed that messages map to pins and flows as specified. Furthermore 
we have enforced the specified ordering by the flow. We have not defined an ESM, but 
it would not be wrong to do so. This is a case where just an ESM could be sufficient (a 
shallow block). Doing so would be OK! 
Not enforcing ordering in flow or ESM=-3 
Not separating streaming from other pins=-1 
Using receive event actions=-1 
Object types missing or wrong=-0.5 
Only showing interface=+3 
 

2. Assume that each ctr role played by the PSControl has been pre-defined as an Arctis 
building block, with pins corresponding to the messages it receives and sends. Design 
an Arctis building block for the PSControl showing the control flow among these pre-
defined blocks. The message pins of the predefined blocks need not be connected, but 
shall be shown. 
 



Side 8 av 17 

  

ReadCard-CTR

GetReservation-
CTR

PickUp-CTR Return-CTR

GiveKey-CTR

Checkout-CTR

RetrunKey-CTR

CheckIn-CTR

Thanks-
CTR

Go-CTR

[reservation.status = 
reserved]

[reservation.status = started]
[reservation = 

void]

PSControl

 
 
We have just indicated the presence of streaming pins for messages here. Giving exact 
pins was not the main point, but to show the flow. (specifying pins in detail is fine). 
 
Here a student may do similar mistakes as on q1.4. We give credit for solutions that 
are consistent with their solution to 1.4 to avoid penalizing twice for same mistake. 
 
Not using answer to q2.1=-1 
Not representing the ordering if done so in q1.4=-3 
... if not done so in q1.4=-1 
Only streaming flows or control flows=-1 



Side 9 av 17 

  

Combining blocks, e.g. just one for Safe=-1 
Inventing new message-pins not specified=-1  
Specifying message flows incorrectly=-0.5 
Only PSControl context- not internal flow=+3 
 

 
3. Explain the use of receive event actions to capture user interface events. Illustrate with 

a case from the Panel assuming that the Panel is a GUI block. 
 

Display
Return
Screen

Continue

Display
Declaration
Screen

TripData

continue

Declare:TripData

Declaration:TripData

etc....

Retrun-Pan

 
The principle is that the Java code for the GUI has listeners corresponding to buttons 
clicks. This is the normal technique for GUI programming using Java. When a listener 
is called due to a button click the event is conveyed to the Arctis model by a method 
called SendToBlock(event, ...). This triggers a receive event action in the Arctis 
diagram. In the Panel we will use a receive event action for each button that can be 
clicked in the current window. 
 
SendToBlock not mentioned=-2 
Receive event actions not mentioned=-1 
Display action not mentioned=-1 
No illustration=-2 

 
Question 3. (20%) Validation 

1. Explain what is required for an SDL process graph to satisfiy a set of sequence 
diagrams. 
 
The SDL process graph shall contain all the event sequences specified for the 
corresponding instances in the MSCs. It may contain more sequences, but no less. In 



Side 10 av 17 

  

the case where MSCs define interfaces/roles one may ignore events on other 
interfaces/roles in the process graph. 
Not mentioning sequences/ordering or behavior=-3 
Not mentioning that the process can do more=-2 
Only saying that all roles must be considered=+3 
 

2. Explain the concept of a mixed initiative and why it is important to recognize mixed 
initiatives. 
 
Mixed Initiatives is a situation where a process in a given state may receive inputs 
from two or more independent sources/interfaces. In a role behaviour it shows up as a 
state with both none and visible inputs. Important because this is where input 
inconsistency may occur. 
Missing why=-2 
Imprecise why=-1 
 

3. Explain the concept of input consistency and why it is important to ensure input 
consistency. 
 
When two states of a role are connected by a none-transition (also called an invisible 
transition) the next state should accept at least the same visible inputs as the current 
state. If not, it is impossible to construct a process in the environment that can fully 
explore the role without causing unspecified receptions and problems that may follow 
from that. Thus, it is an indication that the process will not work correctly with any 
other process that try to explore its full behaviour. This problem only occur in 
connection with mixed initiatives! 
 
Not a correct definition, but a correct example=-2 
Not saying why it is important=-2 
Not mentioning unspecified reception as one reason=-1 
Imprecise why=-1 
 

4. What is the purpose of an ESM in Arctis? 
 

The purpose is to: 
a. Specify the ordering of tokens passed across the interfaces of a building block 

that the environment must respect and the building block will guarantee. 
b. Support validation that the internal flows are consistent with the ESM 
c. Replace the internal flows in the analysis of the enclosing flows. 
d. Support validation that external flows do not harm the ESM. 

This has not been lectured in detail, but the students have used ESMs in their term 
assignment, and should be able to explain this to a certain degree. 
Mention that it provides states, but nothing else=+2 
Also mention restrictions=+2 
Explaining a above=+8.5 
Not mentioning b,c,d above=-1.5 total 
Not explaining ordering=-2  
Stating that it defines the external behaviour of a block=+5 



Side 11 av 17 

  

Vedlegg/ Appendix 

English only 
Carpool 
We shall here study a system for carpooling as defined in Figure 1 (using UML). The system manages 
a fleet of cars that can be rented by registered Users for shorter or longer periods. The cars are 
available at Parking Stations where there are special Parking Station Terminals that have a Key Safe, a 
Card Reader and a touch display Panel. Users book cars by accessing the Central Station from mobile 
User Clients. The Central Station manages reservations using the interface collaborations specified in 
Figure 2 and detailed in Figures 3 and 4. The Central Station keeps track of available and busy cars by 
means of the Check Out and Check In collaborations defined in Figure 4. Datatypes used in the system 
are defined in Figure 10. 
 
A car is picked up and returned at a Parking Station according to the procedure define by the Car 
Pickup and Return activity referenced in Figure 5 and defined in Figure 6. This is an activity diagram 
that defines an ordering of sequence diagrams. It is essentially an Interaction Overview diagram 
(which is the UML version of an HMSC diagram). The roles participating in each sequence diagram is 
indicated by partitions in the action symbols in order to help reading the diagram. The referenced 
sequence diagrams are defined in Figures 4,7,8 and 9.  
 
At the parking station the user inserts a card in the Parking Station Terminal. The card carries a 
CardID that is used to identify the User and to fetch the User’s current Reservation from the Central 
Station. If there is a current Reservation with status reserved, see Figure 10, the terminal will assume 
that the user is there to pick up a car. It will then identify the car and the corresponding Slot in the 
KeySafe where the car keys are stored and make the keys available for the user in a drawer as indicated 
in the GiveKeys collaboration in Figure 9. If the status of the current Reservation is started the 
terminal will assume the user is there to return a car. The user is then asked to fill in TripData 
information about mileage, fuel level and parking lot. When this is done the KeySafe will open a 
drawer to receive the returned car keys. If the returned Reservation is void, the user may pick up a car 
directly if one happens to be available (not detailed here).  
 

Central
Station

ps[1..*]:
Parking
Station

Terminal

uc[1..*]:
User
Client user

user at 
Station

PS
ControlPanel

Key
Safe

Card
Reader

user at 
Station

Parking Station Terminal

Central Station

Carpool system

Card

CarKeys

Display

  
Figure 1 The Carpool system (UML notation) 



Side 12 av 17 

  

 

Central
Station

ps[1..*]:
Parking
Station

Terminal

uc[1..*]:
User
Client

Ps-Cs Book

ps cs
cs uc

Central Station Interfaces

 
Figure 2 Central Station interfaces as collaborations 

 

cs uc

Grant
(Reservation)

sd Book

Select(Reservation)

alt

Book(Reservation)

Alternatives
(ReservationList)

Grant(Reservation)

uccs

Book

Booksd

alt

Cancel(Reservation)

 
Figure 3 The Book collaboration 



Side 13 av 17 

  

sd GetReservation 

ps cs

GetReservation
(CardId)

ReservationGot
(Reservation)

csps

Check 
Out

Get
Reservation

Check
In

Ps-Cs

GetReservationsd Check Outsd Check Insd

ps cs

CheckedOut
(Reservation)

ps cs

CheckedIn
(TripData)

sd Check Out 

sd Check In 

car available

car busy

car available

car busy

 
Figure 4 The Ps-Cs interface 

 
 
 



Side 14 av 17 

  

PS
ControlPanel

Key
Safe

Central
Station

PanelIF

SafeIF

Ps-Cs

Card
Reader Read

Card

ctr

ctr
ctr

ctr

cs

cr

safe

pan

Parking Station Interfaces

Car Pickup and Returnact

 
Figure 5 Parking Station Interfaces as collaborations 

ReadCard ctrcr

Ps-Cs.
GetReservation csctr

PanelIF.
PickUp ctrpan PanelIF.

Return ctrpan

SafeIF.
GiveKey ctrsafe SafeIF.

ReturnKey ctrsafe

Ps-Cs.
Checkout csctr Ps-Cs.

CheckIn csctr

PanelIF.
Go ctrpan PanelIF.

Thanks ctrpan

Chance ctrpan

act Car Pickup and Return

PanelIF.
PickUp ctrpan

reference to sequence diagram Pickup defined in PanelIF  

 role ctr

[reservation.status = reserved]

[reservation.status = started][reservation = void]

not elaborated

 role pan

 LEGEND:

 
Figure 6 The Car Pickup and Return behaviour. The diagram is an Activity Diagram used like an 
Interaction Overview Diagram (UML) or HMSC (MSC). Actions refer to sequence diagrams having the 
roles indicated.  



Side 15 av 17 

  

ctrcr

ReadCard

ReadCardsd

Card(CardId)

cr ctr

Eject

Ejected

Taken

sd ReadCard

 
Figure 7 The ReadCard Collaboration 



Side 16 av 17 

  

sd Thanks

ctrpan

ReturnPickUp

Chance

pan ctr

Pickup(Reservation)

Continue

Selection

Options

TakeKeys

pan ctr

Return(Reservation)

Continue

Declaration(TripData)

Declare(TripData)

ReturnKeys

Go Thanks

pan ctr

GoToCar(position)

pan ctr

ThankYou

PanelIF

PickUpsd Returnsd Gosd

Thankssd

sd Returnsd PickUp

sd Go

 
Figure 8 The PanelIF collaboration 



Side 17 av 17 

  

safe ctr

GetSlot(Slot)

SlotReady

KeysTaken

Open

Close

Opened

Closed

safe ctr

GetSlot(Slot)

SlotReady

KeysDropped

Open

Close

Opened

Closed

SafeIF

Give Keysd Return Keysd

ctrsafe

Return
Key

Give
Key

sd Return Keysd Give Key

 
 
Figure 9 The SafeIF collaboration 

identifier:CarId
type:CarType
position:GPS
milage:Integer
status:{available, 
booked, busy, 
out-of-service}

Car

identifier:Uid
card:CardId

User
identifier:Stn
location: Address
position:GPS
parkingSlots[1..*]:Integer

ParkingStation

Carpool 

*

11

*

identifier:RId
customer:UId
fromtime: Time
totime:Time
Location:Stn
status:{requested, reserved, started, ended, 
cancelled}
car:CarId

Reservation

1

*

0..1 ** 0..1

1

0..1

1

0..1

reservation:RId
car:CarId
milage:Integer
fuel:Integer
fromtime:Time
totime:Time

TripData

0..1 1

 
Figure 10 Data types in the Carpool system 


