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Exam - Friday 11. may 2001

SIE 5025 Pålitelige systemer

 

Dependable systems

 

Solution to problems

 

Version 0.3; 7 June 2001; BEH

 

Problem 1

 

a) There are one requirement for the interval (un)availability and two requirements 
for the reliability

 

1

 

, i.e:

Interval unavailability and unavailability: 

 (1.1)

Reliability function (Fuksjonssannsynlighet):

 (1.2)

b) When the failure process is an homogeneous Poisson process, we have a constant 
failure rate and intensity  and independent failures, hence:

 (1.3)

which with the values of 

 

(1.2)

 

 yields

 (1.4)

Hence the week requirement is the strictest.

 

1. A definition of the attributes reliability and availability are of course welcome, but not required.

1 A 0 1yr,( )– U 0 1yr,( ) 10
365.25 60 24⋅ ⋅
------------------------------------- 1.90 10 5–( )= = =

R 1hr ( ) 1 10 5––≥
R 7 24⋅ hr ( ) R 168hr ( ) 1 10 3––≥=

λ

R tx( ) e λ tx– Requirmentx≥=

λ1hr 1 10 5–( ) 1
hr
-----≤

λ1week 5.96 10 6–( ) 1
hr
-----≤
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(The approximate approach  and  are also 
acceptable since the valus are small in both cases. The approx. should be 
mentioned.)

From Korolyuks theorem  
(In the above calculation we does not include the down time portion of the 
MTBF, e.g. , since it obviously does not have any 
numerical influence, i.e. both answers are considered correct.

 (1.5)

which yeilds .

c) Reliability block diagram, where each block represents a link.

Between user Y and T we have a parallel series system. From the diagram, the 
availability between becomes directly from the diagram:

where

which yields

.

Between user X and T we have a bridge system. This is solved by using the ele-
ment YZ as a pivot element and condition on whether it is working or not. The 
two cases is then a series of two parallel links and a parallel of two links in series, 
i.e.

 (1.6)

λ1hr1hr 10 5–≤ λ1week168hr 10 3–≤

MTBF =1/λ1week 167916hr≥

MTBF =1/λ1week MDT+

MDT
min MTBF( )
----------------------------- U 0 1yr,( ) 10

365.25 60 24⋅ ⋅
------------------------------------- 1.9010 5–= =≤

MDT 3.19hr≤

YT

YZ

YX XZ

ZT

BETWEEN USER Y AND SERVER T

BETWEEN USER X AND SERVER T

XY

XZ ZT

YT

YZ

AYT 1 1 Al–( ) 1 ABackup–( )–=

ABackup Al 1 1 Al–( ) 1 Al Al–( )–( )=

AYT Al 1 Al 2Al
3 Al

4+–+( )=

AXT 1 1 Al–( )2–( )2 Al⋅=

 1 1 Al Al–( )2–( ) 1 Al–( )⋅+
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which yields .

d) To obtain the failure intensity, we first obtain the mean time between failures. 
Since all links are independent we may successively use the relations:

 

General

 

 (1.7)

 

Series of two elements:

 

 (1.8)

 

Parallel of two elements

 

 (1.9)

For the system at hand, the intermediate results are shown in the table below. 

(At the exam, it is not required that all intermediate and final result are computed. 
It is sufficient to show how they may be computed.)

The failure intensity seen from user Y is then

 (1.10)

e) The unavailability of the network may be obtained by the equation

AXT Al
2 2 2Al 5Al

2 2Al
3+–+( )=

1 A–( ) MDT
MTBF
----------------= MUT AMTBF=

As A1 A2= MUTs 1 1
MUT1
--------------- 1

MUT2
---------------+ 

 ⁄=

1 Ap–( ) 1 A1–( ) 1 A2–( )= MDTp 1 1
MDT1
--------------- 1

MDT2
---------------+ 

 ⁄=

(((YX, 
XZ)||YZ), 
ZT)||XT

((YX, XZ) 
|| YZ), ZT

(YX, 
XZ)||YZ

(YX, XZ) 

YZ 

XT

Subnetwrk Availability MDT MTBF

λYT
1

MTBFYT
----------------------=
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 (1.11)

where  if the traffic can be carried in failure mode , zero oth-
erwise, and  is the probability of the mode. If we subdivide the failure 
modes into two disjoint sets,  and , we may obtain the lower 
and upper bound by taking the traffic carrying capability into account the modes 
in , and make an optimistic  and an pessimistic 
assumption for the traffic carrying capability in the 
remaining, i.e.

 (1.12)

f) Makes a table of the routes in the failure modes in 

When a route is found we have  otherwise zero. The probabilities of 
the failure modes are:

 (1.13)

Inserting into (1.12) it is obtained

 (1.14)

Tabell 1.1 

F_mode

… YT XZT

XY YT XZT

XZ YT XYZT

YZ YT XZT

YT XZT

ZT YT XZYT

U 1 I φx( )–( )P φx( )
φx∀

∑=

I φx( ) 1= φx Φ∈
P φx( )

ΦD ΦE Φ ΦD–=

ΦD I φx( ) 1=( ) φx∀ Φ E∈,
I φx( ) 0=( ) φx∀ Φ E∈,

1 I φx( )–( )P φx( )
φx∀ Φ D∈
∑ U 1 I φx( )–( )P φx( )

φx∀ Φ D∈
∑ P φx( )

φx∀ Φ E∈
∑+≤ ≤

1 I φx( )–( )P φx( )
φx∀ Φ D∈
∑ 1 P φx( )

φx∀ Φ D∈
∑– 

 +=

ΦD

πYT …( ) πXT …( )

I φx( ) 1=

P …( ) Al
5=

P β( ) Al
4 1 Al–( )= β, XY XZ YZ YT ZT, , , ,=

Al
4 1 Al–( ) UYT 1 Al

5– 4Al
4 1 Al–( )–≤ ≤

0 UXT 1 Al
5– 5Al

4 1 Al–( )–≤ ≤
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g) Rewrites the expression in (1.14) in terms of  where only the terms of the low-
est order is taken into account, i.e. the most significant terms. Uses  and  
to denote the upper and lower bounds respectively. 

 (1.15)

In the “connectivity case” the unavailability was in the order of  for both con-
nections. This indicates that an arbitrary single link failure may be tolerated. In 
the traffic constrained case,  and cannot tolerate all single link failures, 
while  indicates that (at least) an arbitrary single link failure 
may be tolerated.

h) Extends the Tabell 1.1 of the routes in the failure modes in  with single ditch 
failure (in bold italic)

When a route is found we have  otherwise zero. The probabilities of 
the failure modes becomes:

 (1.16)

Tabell 1.2 

F_mode

… YT XZT

XY YT XZT

XZ YT XYZT

YZ YT XZT

YT XZT

ZT YT XZYT

XZ YT

YZ XZT

ZT

Ul
U… U…

UYT Al
4 1 Al–( ) Ul≈≥

UYT 1 Al
5– 4Al

4 1 Al–( )– 1 1 5Ul–( ) 4 1 4Ul–( )Ul–– Ul≈ ≈≤

UXT 0≥

UXT 1 Al
5– 5Al

4 1 Al–( )– 1 1 5Ul
5
2 

  U2
l+– 

  5 1 4Ul–( )Ul––≈≤ 10U2
l=

Ul
2

UYT Ul≈
0 UZT 10U2

l≤ ≤

ΦD

πYT …( ) πXT …( )

I φx( ) 1=

…( ) Al
5 1 Ud–( )3=

β( ) Al
4 1 Al–( ) 1 Ud–( )3= β, XY XZ YZ YT ZT, , , ,=

β( ) Al
5Ud 1 Ud–( )3= β, XZ YZ ZT, ,=
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In the above equations we consider the failure associated link independent of the 
“state” of the ditch it resides in.

Inserting into (1.12) it is obtained

 (1.17)

Problem 2

a) Cut from jgroup manual:

The object group paradigm has been proposed [7]. In this paradigm, functions of 
a distributed service are replicated among a collection of logically related server 
objects gathered together in an object group. A group constitutes a logical 
addressing facility: clients transparently interact with object groups by remotely 
invoking methods on them, as if they were single, non-replicated remote objects. 
A method invocation on a group results in the method executed by one or more 
of the servers forming the group, depending on the invocation semantics.

b) The basic requirements are:

All replicas must receive there messages in exactly the same sequence, i.e. the 
message passing must be according to atomic multicast
- total order,
- termination 
- Atomicity (all correct receivers receives the same message or none.)

The computation within fault free) each replica must be deterministic, i.e. If non-
faulty replicas process identical input message streams, the approach must guar-
antee that they produce identical output message streams. (This may be achieved 
with the state machine approach.)

c) Three states may be identified according to how many replicas that are 
synchronous. 

UYT Al
4 1 Al–( ) 1 Ud–( )3 2Al

5 1 Ud–( )2Ud+≥

UYT 1 Al
5 4Al

4 1 Al–( )+( ) 1 Ud–( )3 Al
5 1 Ud–( )2Ud––≤

UXT 2Al
5 1 Ud–( )2Ud≥

UXT 1 Al
5 5Al

4 1 Al–( )+( ) 1 Ud–( )3– Al
5 1 Ud–( )2Ud–≤

All
synch.

One
out of
synch

Unsynchψ1

ψall

ψ1 2⁄

δ

3
21
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Denote the probability of being in state  by  and 
. It is given that .  may be 

obtained by solving the following set of linear differential equations:

 where  (2.1)

The time until synchronization failure is equal to the time until state 3 is reached. 
Hence,  is the distribution function (PDF) of this time and the pdf becomes

.  (2.2)

d) Since  is much less than  we may Taylor expand  around , i.e.

 (2.3)

Inserted into the expression for  and simplified this yields:

 (2.4)

The pdf has two time constants reflecting the time constants in the system. 

 is very much shorter than  an will have negligible influ-

ence on the pdf. It represents the “transient information” that the system is 

initiated in state 1. The time constant  governs the overall behaviour. 

Hence, we may use the approximation . We also see that 

. As a result we have the approximate pdf

 (2.5)

i Pi t( )
P t( ) P1 t( ) P2 t( ) P3 t( ), ,{ } T= P 0( ) 1 0 0, ,{ } T= P t( )

td
d

P t( ) Λ P t( )⋅= Λ  =

P3 t( )

f t( )
td

d
P3 t( )=

ψ δ α δ2

α δ δ 4ψ+( ) δ2 4δψ
2 δ2
------------- 16 δψ( )2

8δ2 δ2
---------------------– o 4 δψ( )2( )+ += =

 δ 2ψ 2
ψ2

δ
------–+≈

f t( )

f t( )
ψ2

δ 2ψ 2
ψ2

δ
------–+

--------------------------------- e
ψ2

δ
------ t⋅–

e
δ 2ψ ψ2

δ
------–+ t⋅–

– 
 =

δ 2ψ ψ2

δ
------–+ 

  1– ψ2

δ
------ 

  1–

ψ2

δ
------ 

  1–

e
δ 2ψ ψ2

δ
------–+ t⋅–

0≈

δ 2ψ 2
ψ2

δ
------–+ δ≈

f t( )
ψ2

δ
------e

ψ2

δ
------ t⋅–

=
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It is seen that the above is the pdf of a negative exponential distribution with 
expectation . Hence, the time until synchronization failure is inverse pro-
portional with the expected synchronization time  and proportional with the 
square of the expected time between out-of-order arrival of messages .

e) The time is found straight forwardly from the pdf in the problem formulation or 
an approximation from (2.5). 

 (2.6)

If  the  will decrease since we have another “source” of 
order failures - corresponding to a direct path in the state diagram. From the dia-
gram it is seen that we will have more order failures due to all replicas receiving 
messages out of order when , since state 1-3 will more often lead to 
failure than the path(s) (1-2)*-3. * indicates that the transition may be iterated.

δ ψ2⁄
δ 1–

ψ 2–

MTFForder t f t( ) td⋅( )
0

∞

∫ δ ψ2⁄≈=

ψall 0≠ MTFForder

ψall ψ2 δ⁄>


