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Exam - Friday 25. may 2002

SIE 5025 Pålitelige systemer

 

Dependable systems

 

Solution to problems

 

Version 0.1; 13 May 2001; BEH

 

Task 1

 

a)

 

The direct method:

 

 An empirical linear regression model is established between 
direct metrics of the code and the number of logical faults (later) found in the 
code during debugging, etc. This model is later used for prediction of the fault 
content of new code. In its simplest form just the number of lines of code is used 
as a metric. More elaborate version may use counts of various kind of statements.

 

Halsteads software science.

 

 uses the number of distinct and occurrences of 
operands and operators to predict various properties of the code, among them the 
Fault content. The “science” has adopted ideas from information theory and cal-
culates/predicts the number of thought-steps necessary to produce the code. The 
fault content is found as the ratio between this quantity and the human failure 
intensity.

 

McCabes cyclomatic number.

 

 The control flow of the code is expressed as a 
directed graph. The complexity of the software is measured by the (cyclomatic) 
complexity of the graph. This complexity is empirically used to predict the fault 
content. [v(G)=E-N+2F; E is the number of edges, N is the number of nodes, and 
F is the number of entry points in the software. The number is the number inde-
pendent cycles in a planar graph]

b) <<Rewritten excerpt from lecture notes>> The software failure process of con-
tinuously operating software may be described by model (the Moore/Mealy like 
model discussed in the lecture notes and) illustrated in 

 

Figur 1.1

 

. In this model, 
an input from the fault unveiling domain  will activate a logical fault in the 
software. Most likely this will first cause the faulty logic of the software to intro-
duce an error in the state space of the software. (The fault activation may be 
conditioned by a specific (set of) internal states of the software, and hence, 

 

it is 
the combination of the internal state and the input which causes the fault 
activation

 

.) 

After a latency period this error may cause a failure of the software system. The 
failure may be triggered by an input outside  as illustrated in 

 

Figur 1.1

 

.b. 
(Again we may have a 

 

combination of the internal state and the input)

IF

IF
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c) Time from embedding of a fault into the software and until error occurrence is 
called 

 

fault dormancy

 

 and is described by the pdf .

Time from error occurrence until failure is called the 

 

error latency

 

 and is 
described by the pdf .
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Figur 1.1 Failure in the I/O-model extended to include state space
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a) Activation of a dormant logical fault

b) Software failure
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d)
The probability of being in state 

 at time  is denoted . The 
state vector of the system are 
defined as 

. 
The probability of being in the 
various states are determined by 
the set of linear differential equa-
tions with initial condition 
below. 

 where 

The reliability function is the probability of being in an up-state. Hence,

e) We have that (if not remembered, the expression below is easily derived from the 

definition of failure rate .

 (1.1)

f) We have, when the system is stationary, that the failure intensity . 
Since restarts are immediate and the system is as new after a restart, we have 
MTBF = MTFF. Hence,

 (1.2)

(Alternative solution: The above answer may also be obtained from the state dia-
gram by introducing a transition from state 3 to 1, find the intensity from the 
steady state solution of this and let the restart rate go to infinity to obtain the 
above.)
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g) It is seen that letting  in (1.1) yields an undefined expression. Using Hopi-
tals rule does not resolve this problem. Hence, rearranging according to the tip 
and eliminates , i.e.,

 (1.3)

Regards the case: :

The last term in numerator and denominator will tend to zero and we obtain 

Regards the case: :

The last term in numerator and denominator will tend towards infinity and dom-
inate the first term which may be neglected. Reducing the remaining expression 
we obtain 

It is seen that in both cases, the limiting rate is different from the intensity. Both 
may be interpreted as events per second. The first is, however, the probability that 
the first failure will occur at the next instant, given that it has not occurred before, 
i.e. not for an infinitely long time. The latter is the probability the next failure will 
occur in the next instant.

The two cases shows that it is the slowest part in the failure process that will dom-
inate the failure rate after an infinitely long time.

Task 2

a) The two modifications are:

• The dependable registry should be used to obtain a reference to the group and 
a proxy for accessing the group.

• For each operation on the server (invocation), it should be decided which 
invocation method (anycast or multicast) that should be used. This is decided 
according to the operation semantics, e.g. is the state of the server replica 
changed or not?, should the state of the replicas in the group be consistent?.

b) Anycast: any single member of the group is accessed/invoked. Used in this case 
for getting an address since the replicas manages their own share of the address 
pool, i.e. an address from a randomly chosen part of the pool is returned.

Multicast: all members of the group is accessed/invoked. Used in this case 
refresh address leases since a) the client has no knowledge of which server that 
owns his address, b) all copies of the leased_address_database needs to be 
refreshed.
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c) To be on the safe side we should ensure that the processor and operating system 
had crash failure semantics. Jgroup is able to deal with timing failure semantics. 
This might be detected by jgroup as a temporary network partition, and state 
merge functionality must be implemented. Similarly jgroup can deal with omis-
sion failures as a network partition. jgroup is unable to deal value failure 
semantics.

d) From the criteria defined in the task, processor #2 should always be repaired first. 
This yields the following state diagram, where the mnemonic of the state symbol 
indicates the failed processors:

e)
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The availability of one processor is  since 
 and .

From the block diagram we have:

 (2.1)

f) Since all processors are independent we may successively use the relations:

General

 (2.2)

Series of two identical elements:

 (2.3)

Parallel of two elements

Applied to the server subsystem - this yields.

g) After the reconfiguration, the block diagram of the server subsystem becomes

With fewer processors that may fail, and bring the system down, the availability 
is improved and the unavailability is reduced. In this case, the unavailability 
becomes
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 (2.4)

and hence the ratio

 (2.5)

(An alternative and faster way to the same result is to use

)  (2.6)

It is seen that the ratio is  . 

If  we se that

 or more precisely .  (2.7)

(Last expansion is not requred at the examn).

When  the the node #2 is down most of the time anyhow. The reduc-
tion in failure rate by using just node #1 for the other replicas does not matter. 
When , the failure rate and unavailability of the node(s) hosting rep-
licas  is almost halved, and hence, the probability of simulataneous failure 
of the two diagram branches/halves of the system are approx. the half.
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