

Side 1 av 7

Exam - Friday 25. may 2002

SIE 5025 Pålitelige systemer

Dependable systems

Solution to problems

Version 0.1; 13 May 2001; BEH

Task 1

a)

The direct method:

 An empirical linear regression model is established between
direct metrics of the code and the number of logical faults (later) found in the
code during debugging, etc. This model is later used for prediction of the fault
content of new code. In its simplest form just the number of lines of code is used
as a metric. More elaborate version may use counts of various kind of statements.

Halsteads software science.

 uses the number of distinct and occurrences of
operands and operators to predict various properties of the code, among them the
Fault content. The “science” has adopted ideas from information theory and cal-
culates/predicts the number of thought-steps necessary to produce the code. The
fault content is found as the ratio between this quantity and the human failure
intensity.

McCabes cyclomatic number.

 The control flow of the code is expressed as a
directed graph. The complexity of the software is measured by the (cyclomatic)
complexity of the graph. This complexity is empirically used to predict the fault
content. [v(G)=E-N+2F; E is the number of edges, N is the number of nodes, and
F is the number of entry points in the software. The number is the number inde-
pendent cycles in a planar graph]

b) <<Rewritten excerpt from lecture notes>> The software failure process of con-
tinuously operating software may be described by model (the Moore/Mealy like
model discussed in the lecture notes and) illustrated in

Figur 1.1

. In this model,
an input from the fault unveiling domain will activate a logical fault in the
software. Most likely this will first cause the faulty logic of the software to intro-
duce an error in the state space of the software. (The fault activation may be
conditioned by a specific (set of) internal states of the software, and hence,

it is
the combination of the internal state and the input which causes the fault
activation

.)

After a latency period this error may cause a failure of the software system. The
failure may be triggered by an input outside as illustrated in

Figur 1.1

.b.
(Again we may have a

combination of the internal state and the input)

IF

IF

Side 2 av 7

c) Time from embedding of a fault into the software and until error occurrence is
called

fault dormancy

 and is described by the pdf .

Time from error occurrence until failure is called the

error latency

 and is
described by the pdf .

Result
domain

Input
domain

System Configuration data

Logic

State

Fault

definition

Figur 1.1 Failure in the I/O-model extended to include state space

IF

Error

Result
domain

Input
domain

System Configuration data

Logic

State

Failure

definition

IF

Error

a) Activation of a dormant logical fault

b) Software failure

λe λτ–

p δ τ()⋅ 1 p–()αe ατ–+

Side 3 av 7

d)
The probability of being in state

 at time is denoted . The
state vector of the system are
defined as

.
The probability of being in the
various states are determined by
the set of linear differential equa-
tions with initial condition
below.

 where

The reliability function is the probability of being in an up-state. Hence,

e) We have that (if not remembered, the expression below is easily derived from the

definition of failure rate .

 (1.1)

f) We have, when the system is stationary, that the failure intensity .
Since restarts are immediate and the system is as new after a restart, we have
MTBF = MTFF. Hence,

 (1.2)

(Alternative solution: The above answer may also be obtained from the state dia-
gram by introducing a transition from state 3 to 1, find the intensity from the
steady state solution of this and let the restart rate go to infinity to obtain the
above.)

Working
No fault act.

SW
Failed

1

3

Working
Error in state

2

λp
λ 1 p)–()

α

i t Pi t()

P t() P1 t() P2 t() P3 t(), ,{ }T=

td
d

P t() ΛP t()=

P 0() 1 0 0, ,{ }T=

Λ
λ– 0 0

λ 1 p–() α– 0

λp α 0

=

R t() P1 t() P2 t()+ 1 P3 t()–= =

P t T FF< t ∆t+≤ T FF?GivenBar?(

∆t

∆t 0→
lim=

λ t() f t()
R t()
--------- td

d
R t()–

R t()
------------------ λ α λp–()e λτ– α 1 p–()e ατ––()

α λp–()e λτ– λ 1 p–()e ατ––
--= = =

z 1 MTBFÚ=

z MTFF() 1– R t() td

0

∞

∫ 
 
 

1–

α λ–() α λp–()e λτ– λ 1 p–()e ατ–– td

0

∞

∫ 
 
 

1–

= = =

α λ–() α λp–
λ

---------------- λ 1 p–()
α

--------------------– 
  1–

= αλ
α λ 1 p–()+
-------------------------------=

Side 4 av 7

g) It is seen that letting in (1.1) yields an undefined expression. Using Hopi-
tals rule does not resolve this problem. Hence, rearranging according to the tip
and eliminates , i.e.,

 (1.3)

Regards the case: :

The last term in numerator and denominator will tend to zero and we obtain

Regards the case: :

The last term in numerator and denominator will tend towards infinity and dom-
inate the first term which may be neglected. Reducing the remaining expression
we obtain

It is seen that in both cases, the limiting rate is different from the intensity. Both
may be interpreted as events per second. The first is, however, the probability that
the first failure will occur at the next instant, given that it has not occurred before,
i.e. not for an infinitely long time. The latter is the probability the next failure will
occur in the next instant.

The two cases shows that it is the slowest part in the failure process that will dom-
inate the failure rate after an infinitely long time.

Task 2

a) The two modifications are:

• The dependable registry should be used to obtain a reference to the group and
a proxy for accessing the group.

• For each operation on the server (invocation), it should be decided which
invocation method (anycast or multicast) that should be used. This is decided
according to the operation semantics, e.g. is the state of the server replica
changed or not?, should the state of the replicas in the group be consistent?.

b) Anycast: any single member of the group is accessed/invoked. Used in this case
for getting an address since the replicas manages their own share of the address
pool, i.e. an address from a randomly chosen part of the pool is returned.

Multicast: all members of the group is accessed/invoked. Used in this case
refresh address leases since a) the client has no knowledge of which server that
owns his address, b) all copies of the leased_address_database needs to be
refreshed.

t ∞→

e λτ–

λ α λp–() α 1 p–()e λ α–()τ–()
α λp–() λ 1 p–()e λ α–()τ–

--

α λ>

λ τ()
τ ∞→
lim λ=

α λ<

λ τ()
τ ∞→
lim α=

Side 5 av 7

c) To be on the safe side we should ensure that the processor and operating system
had crash failure semantics. Jgroup is able to deal with timing failure semantics.
This might be detected by jgroup as a temporary network partition, and state
merge functionality must be implemented. Similarly jgroup can deal with omis-
sion failures as a network partition. jgroup is unable to deal value failure
semantics.

d) From the criteria defined in the task, processor #2 should always be repaired first.
This yields the following state diagram, where the mnemonic of the state symbol
indicates the failed processors:

e)

OK

1

#3

4

#2

3

#1

2

#2,#3

7

#1,#2

6

#1,#2,#3

8

#1,#3

5

λ

λ λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

µ
µ

µ

µ

µ

µ

#3#1

#2

Side 6 av 7

The availability of one processor is since
 and .

From the block diagram we have:

 (2.1)

f) Since all processors are independent we may successively use the relations:

General

 (2.2)

Series of two identical elements:

 (2.3)

Parallel of two elements

Applied to the server subsystem - this yields.

g) After the reconfiguration, the block diagram of the server subsystem becomes

With fewer processors that may fail, and bring the system down, the availability
is improved and the unavailability is reduced. In this case, the unavailability
becomes

A
MUT

MUT MDT+
--------------------------------- µ

λ µ+
-------------= =

MUT λ 1–= MDT µ 1–=

Us 1 A– s 1 A–() 1 A2–() λ2 λ 2µ+()
λ µ+()3

---------------------------= = =

1 A–() MDT
MTBF
----------------= MUT AMTBF=

As A2= MUTs 1 1
MUT
------------- 1

MUT
-------------+ 

 Ú
1
2
---MUT 1

2λ
------= = =

1 Ap–() 1 A1–() 1 A2–()= MDTp 1 1
MDT1
--------------- 1

MDT2
---------------+ 

 Ú=

(#1,#3)||#2

#1,#3

#i

Subsystem Availability MDT MTBF

µ
λ+µ

1

µ
1

λ
+ 1

µ

µ2

Hλ+µL2
λ+2 µ
2 µ2

Hλ+µL2

2 λµ2

µIλ2+3 λµ+µ2M

Hλ+µL3
λ+2 µ

µHλ+4 µL
Hλ+µL3

λ2 µHλ+4 µL

#1

#2

Side 7 av 7

 (2.4)

and hence the ratio

 (2.5)

(An alternative and faster way to the same result is to use

) (2.6)

It is seen that the ratio is .

If we se that

 or more precisely . (2.7)

(Last expansion is not requred at the examn).

When the the node #2 is down most of the time anyhow. The reduc-
tion in failure rate by using just node #1 for the other replicas does not matter.
When , the failure rate and unavailability of the node(s) hosting rep-
licas is almost halved, and hence, the probability of simulataneous failure
of the two diagram branches/halves of the system are approx. the half.

Us∗ 1 A– s∗ 1 A–()2 λ2

λ µ+()2
--------------------= = =

Us∗

Us
-------- λ µ+()

λ 2µ+()
---------------------=

Us∗

Us
-------- 1 A–()2

1 A–() 1 A2–()
-------------------------------------- 1

1 A+
-------------= =

1
2

Us∗

Us
-------- 1< <

λ µ«

Us∗

Us
-------- 1

2
---≈

Us∗

Us
-------- 1

2
--- λ

2 λ 2µ+()
------------------------+ 1

2
--- λ

4µ
------+

1
2
---≈ ≈=

λ µ» A 0≈,

λ µ« A 1≈,
R1 S2,

