
TTM 4128 Exam May 19th 2008

Enclosed :
Shortened version of RFC 1157
Shortened version of RFC 1213
ASN.1 Encoding Scheme

Task 1: SNMPv1 (15%)

1.1 Explain shortly what SNMP can be used for.
SNMP is used for managing networked equipment such as Hosts, Routers, Switches,
Line printers, etc. These components contain sub-components such as interface cards,
protocol functionality on various layers that can be managed. This management can
comprise

- Observation of state variables related to protocols such as Ethernet, Token
Ring, IP, TCP and UDP

- Observation, setting values and adding lines in network connectivity tables
Observation, setting values and changing routing tables

1.2 What is SNMP SMI? List at least 3 important issues defined in SMI for
 SNMPv1.

SMI (The Structure of Management Information) addresses the generic aspects of the
MIB, where MIB (Management Information base) defines the types of the managed
objects.

SMI for SNMPv1 is defined in RFC 1155 and 1212 and comprises definition of

• SNMP specific ASN.1 syntax and semantics
• Nodes in the Internet Management tree
• OBJECT-TYPE Macro to define managed object types
• Mechanism to define Indexes

1.3 What is a MIB group?
A MIB group is a collection of related MIBs that are implemented as a whole in a
managed system.

1.4 Which MIB objects can be accessed to decide if a managed component is a
 bridge, gateway or a router. What is the MIB group of these objects?
sysServices object in system group can be used to find the OSI level functionality
(see RFC 1213) and exercise 2.

ipForwarding object in ip group can be used to determine if gateway or router.

1.5 How are MIB types identified? How are MIB object instances identified?

Entities: Identified/addressing
MIBs OBJECTIDENTIFIERS
Managed Objects Socket addresses of SNMP entities combined with
(= MIB instances) OBJECTIDENTIFIERS and indexes. Indexes are used for
tables. The OBJECTIDENTIFIER is then used to indicate the tabular object while the
indexes are used to select the appropriate row

Task 2: SNMPv3 (15%)
2.1 List shortly the security threats that are handled in SNMPv3.

• Modification of information by unauthorized user
• Masquerade: change of originating address by unauthorized user
• Reordering of fragments of message to modify the meaning
• Disclosure

2.2 Which security services are defined to handle the defined threats?
• Authentication module
 Data integrity: Authentication protocols such as HMAC-MD5-96 / HMAC-
 SHA-96
 Data origin authentication: Append to the message a unique Identifier
 associated with authoritative SNMP engine
• Privacy / confidentiality module:
 Encryption
• Timeliness Module:

 Certain data to be checked preventing redirection, delay and replay

Task 3: Table traversal by SNMPv1 (40%)
A Manager is managing an instance of a routing table in a router. The manager and
agent communicate by SNMP version 1. Shortened versions of RFC 1157 and 1213
are enclosed. We have ip::=OBJCET INDENTIFIER{mgmt(2) mib-2(1) 4}

The following instance of the ipRoutingTable exists in the considered router:

ipRouteDest ipRouteIfIndex ipRouteNextHop ipRouteMetric1 ipRouteMetric2 ipRouteType

 10.0.0.99 1 89.1.1.42 5 -1 3
 9.1.2.3 2 99.0.0.3 3 -1 4
 10.0.0.51 3 89.1.1.42 5 -1 3

3.1 (5%) What are the OBJECT IDENTIFIER and OBJECT-SYNTAX of the
 columnar objects of the instance of the ipRoutingTable?

Entity OID SYNTAX
ipRouteDest ipRouteEntry 1 IpAddress
ipRouteIfIndex ipRouteEntry 2 INTEGER
ipRouteNextHop ipRouteEntry 7 IpAdress
inRouteMetric1 ipRouteEntry 3 INTEGER
inRouteMetric2 ipRouteEntry 4 INTEGER
inRouteType ipRouteEntry 8 INTEGER

Where ip ::= OBJCETINDENTIFIER{mgmt(2) mib-2(1) 4} and
ipRouteEntry::= {ipRoutingTable 1} and ipRoutingTable::= {ip 21}

3.2 (15%) The Manager is interested in the following managed objects.

 ipRouteDest ipRouteNextHop ipRouteMetric1
10.0.0.99 89.1.1.42 5
 9.1.2.3 99.0.0.3 3
10.0.0.51 89.1.1.42 5

Show how a manager can traverse the objects {ipRouteDest, ipRouteNextHop,
ipRouteMetric1} of this table by using the appropriate sequence of SNMP v1
messages, and when one SNMP message from the manager to the agent is used to
access one row of the table.

Write the sequence of messages exchanged between the manager and the agent
including the message from the agent that indicates that there are no more instances of
the objects {ipRouteDest, ipRouteNextHop, ipRouteMetric1} in the table.

Each message shall be indicated with SNMP message name and with relevant
VarBind element as parameters. This is the same convention as used in the book, in
the lectures and in the RFCs.

This is the managed objects lexicographically ordered:

ipRoutingTable
(ip 21)

ipRouteEntry
(1)

ipRouteDest
(1)

ipRouteIfIndex
(2)

inRouteMetric1
(3)

inRouteMetric2
(4)

ipRouteNextHop
(7)

inRouteType
(8)

9.1.2.3 2 -1 499.0.0.32

10.0.0.51 3 -1 389.1.1.42 5

10.0.0.99 1 -1 389.1.1.425

ipRoutingTable
(ip 21)

ipRouteEntry
(1)

ipRouteDest
(1)

ipRouteIfIndex
(2)

inRouteMetric1
(3)

inRouteMetric2
(4)

ipRouteNextHop
(7)

inRouteType
(8)

9.1.2.3 2 -1 499.0.0.32

10.0.0.51 3 -1 389.1.1.42 5

10.0.0.99 1 -1 389.1.1.425

The management station sends to the SNMP agent a GetNextRequest-PDU
containing the indicated OBJECT IDENTIFIER values as the requested
variable names:
GetNextRequest (ipRouteDest, ipRouteNextHop, ipRouteMetric1)

The SNMP agent responds with a GetResponse-PDU:
GetResponse ((ipRouteDest.9.1.2.3 = "9.1.2.3"),(ipRouteNextHop.9.1.2.3 =
"99.0.0.3"), (ipRouteMetric1.9.1.2.3 = 3))

The management station continues with:

GetNextRequest (ipRouteDest.9.1.2.3,ipRouteNextHop.9.1.2.3,
ipRouteMetric1.9.1.2.3)

The SNMP agent responds:
GetResponse ((ipRouteDest.10.0.0.51 = "10.0.0.51"),(ipRouteNextHop.10.0.0.51 =
"89.1.1.42"), (ipRouteMetric1.10.0.0.51 = 5))

The management station continues with:
GetNextRequest (
ipRouteDest.10.0.0.51,ipRouteNextHop.10.0.0.51,ipRouteMetric1.10.0.0.51)

The SNMP agent responds:
GetResponse ((ipRouteDest.10.0.0.99 = "10.0.0.99"),(ipRouteNextHop.10.0.0.99 =
"89.1.1.42"), (ipRouteMetric1.10.0.0.99 = 5))

The management station continues with:
GetNextRequest(ipRouteDest.10.0.0.99,ipRouteNextHop.10.0.0.99,ipRouteMetric1.1
0.0.0.99)

As there are no further entries in the table, the SNMP agent returns those objects that
are next in the lexicographical ordering of the known object names. This response
signals the end of the routing table to the management station.

The SNMP agent responds:
GetResponse ((ipRouteIfIndex.9.1.2.3 = “2”), (ipRouteType.9.1.2.3= “4”),(
ipRouteMetric.2.9.1.2.3 = -1))

3.3 (10%) We are considering the first Message going from the Manager to the
 Agent.

 3.3.1 Define the type of the VarBind elements VarBind1, Varbind2,
 etc. in VarBindList by using ASN.1.

GetNextRequest (ipRouteDest, ipRouteNextHop, ipRouteMetric1)

VarBindList::=SEQUENCEOF Varbind
VarBind::=SEQUENCE{name ObjectName, value ObjectSyntax}

Data types of the VarbindList:

Varbind1::= SEQUENCE{ OBJECTIDENTIFIER, IpAddress)
Varbind2::= SEQUENCE{ OBJECTIDENTIFIER, IpAddress)
Varbind3::= SEQUENCE{ OBJECTIDENTIFIER, INTEGER)

3.3.2 Define instances of the VarBind elements defined in 3.3.1 with
 assigned values.

No value of IpAddess and INTEGER is to be carried on theGetNextRequest. We can
then use two options:

Option 1:

We are using the generic type definition of Varbind1, Varbind2 and Varbind3

Varbind1::= SEQUENCE{ OBJECTIDENTIFIER, IpAddress)
Varbind2::= SEQUENCE{ OBJECTIDENTIFIER, IpAddress)
Varbind3::= SEQUENCE{ OBJECTIDENTIFIER, INTEGER)

and with values as follows:

varbind1 :=Varbind1{OBJECT IDENTIFIER ::= ipRouteDest, IPAdress::= 0}
varbind2::=Varbind2{ OBJECT IDENTIFIER ::= ipRouteNextHop, IPAdress::= 0}
varbind3::=Varbind3::={ OBJECT IDENTIFIER::= ipRouteMetric1, INTEGER::= 0)

Option 2:
We are using a new type definition for Varbind1, Varbind2, Varbind3:

Varbind1::= Varbind2:= Varbind3:= SEQUENCE{ OBJECTIDENTIFIER::= value,
NULL)

(From RFC 1157: Some PDUs are concerned only with the name of a variable and not its value (e.g.,
the GetRequest-PDU). In this case, the value portion of the binding is ignored by the protocol entity.
However, the value portion must still have valid ASN.1 syntax and encoding. It is recommended that
the ASN.1 value NULL be used for the value portion of such bindings.)

In the following, the first and most direct (but most comprehensive) alternative is
chosen.

Values of the VarbindList:

varbind1 :=Varbind1{OBJECT IDENTIFIER ::= ipRouteDest, IPAdress::= 0}
varbind2::=Varbind2{ OBJECT IDENTIFIER ::= ipRouteNextHop, IPAdress::= 0}
varbind3::=Varbind3::={ OBJECT IDENTIFIER::= ipRouteMetric1, INTEGER::= 0)

3.4 (10%) The encoding of the VarBind elements is denoted as varbind1BER,

 varbind2BER, etc.

 Define varbind1BER

An OBJECTIDENTIFIER is encoded with each sub identifier value encoded as an
octet. An exception is the iso(1) and organization (3), which are encoded in one octet
as 43.

varbind1 :=Varbind1{OBJECT IDENTIFIER ::= ipRouteDest, IPAdress::= 0}
::= SEQUENCE{ OBJECTIDENTIFIER::= ipRouteDest, IpAddress::=0)

OBJECT IDENTIFIER = Universal 6 = 00000110 = 06 hex
IpAddress = [Application 0] IMPLICIT OCTET STRING (SIZE (4)) =
01000000 = 40 hex
SEQUENCE = Universal 16 constructed = 00110000 = 30 hex

ipRouteDest = 1 3 6 1 2 1 4 21 1 1

So the encoding of the instances of the OBJECT IDENTIFIERS will need 9 octets
(10-1). So the length field will be 00010001 = 11 hex

Varbind 1 Encoding

OBJECT IDENTIFIER IpAddress
Type length Value Type length Value
06hex 11hex 430601020104210101hex 40hex 01 00

The length of varbindBER 1 is 14 = 16 hex
varbind1BER = 30160611430601020104210101400100

Task 4. Semantic WEB (10 %)

Explain what RDF is? Also give a simple RDF specification example.

• RDF stands for Resource Description Framework
• RDF is a framework for describing resources on the web
• RDF provides a model for data, and a syntax so that independent parties can

exchange and use it
• RDF is designed to be read and understood by computers
• RDF is not designed for being displayed to people
• RDF is written in XML
• RDF is a part of the W3C's Semantic Web Activity
• RDF is a W3C Recommendation

RDF describes resources with properties and property values.

Example :
<?xml version="1.0"?><RDF>
 <Description about="http://www.w3schools.com/RDF">
 <author>Jan Egil Refsnes</author>
 <homepage>http://www.w3schools.com</homepage>
 </Description>
</RDF>

A Resource is in this example "http://www.w3schools.com/RDF"
A Property is a Resource that has a name, such as "author" or "homepage"
A Property value is the value of a Property, such as "Jan Egil Refsnes" or
"http://www.w3schools.com" (note that a property value can be another resource)

Task 5. Web-based Management (20 %)

5.1 What are the components of CIM? What is the purpose and functionality of these

CIM components.

CIM consists of three components:
(i) CIM Specification
(ii) CIM Schema
(iii) CIM Extension Schema
CIM Specification defines the details for integration with other management models.
CIM Specification uses an object-oriented approach to describe each entity within a
schema’s area of concern. The specification defines the syntax and rules. The
specification defines the CIM metaschema, each of the metaschema elements, and the
rules for each element.
CIM Schema provides the actual model descriptions for systems, applications, local
area networks, and devices. It is a set of classes and associations that provide a
framework within which it is possible to organize the information about the managed
environment
CIM Schema consists of the following models:
(i) The Core Model
(ii) The Common Model
Extension schema
Represents technology and platform-specific extensions to the Common Model.
Specific to environments such as operating systems. Vendors extend the model for
their products by creating subclasses of objects. Applications can then transverse
object instances in the standard model to manage different products in a
heterogeneous environment.

5.2 Explain the WBEM architecture and the functionality of its components.

Web-Based Enterprise Management (WBEM) is a set of system/network management
technologies developed to unify the management of distributed computing

Web Client

SNMP
Managed Objects

DMI
 Managed Objects

DMI ProviderSNMP Provider

CIM
Object Manager

(CIMOM)
CIM

Schema

Management
Applications

Web Browser

Desktop PC

HTTP HTTP

HTTP

SNMP RPC

CIM
 Managed Objects

HTTP

Figure 14.8 WBEM Architecture

SNMP Agent

DMI Agent

CIM Agent

environments. WBEM is based on CIM specification and schema, CIM-XML, CIM
operations over HTTP, WS-Management.

Web client
Web client is Web browser with management applications
Application requests use CIM schema
Multiple instances of Web clients feasible
CIMOM
CIM object manger mediates between Web clients, managed objects, and CIM
schema
Respond to Operations defined in “CIM Operations” spec.
Create, Modify, Delete operations on
Class, Instance, Property, Qualifier
Handle Provider Registration
Forward Requests to Providers, repositories, etc.
Read/Write access to Management Information
Maintain Class/Instance Information
Information Model
CIM Schema (Core, System,…)
Communication Model
CIM Operations over HTTP
Transport Encoding
Cim-xml – CIM/XML mapping

