TTM4135 Spring exam 2020

1 Multiple choice questions

- 1. Suppose that n is any odd number. Then $2^{-1} \mod n$ is:
 - (a) n-2
 - (b) (n+1)/2
 - (c) (n-1)/2

Explanation:

- 2. Suppose a plaintext comes from a natural language, similar to English, where the most frequent character appears with probability 1/10. For which of the following ciphers is the frequency of all ciphertext characters likely to be less than 1 in 10?
 - (a) The random simple substitution cipher
 - (b) A transposition cipher on blocks of size 12
 - (c) The Vigenére cipher with a key of length 8

Explanation:

- 3. Which of the following ciphers has the largest number of possible keys?
 - (a) The triple-DES cipher with two independent keys
 - (b) The random simple substitution cipher with alphabet consisting of all 8-bit bytes
 - (c) The AES block cipher with the shortest allowed key length

- 4. A block cipher is a function E(m, k) which takes a plaintext block m and a key k to a ciphertext block c. In any useful block cipher:
 - (a) for a fixed key k, the function $E(\cdot, k)$ is a permutation of the set of plaintext blocks
 - (b) for a fixed plaintext block m, the function $E(m, \cdot)$ is a permutation of the set of keys
 - (c) for a fixed ciphertext block c, there is a unique pair (m, k) such that E(m, k) = c

Explanation:

- 5. Suppose the string ABCDE is a portion of a ciphertext which has been encrypted with the one time pad. The corresponding plaintext string P is another 5-character string. Which of the following is the most accurate statement?
 - (a) Every possible plaintext string of length 5 is equally likely to be the correct P
 - (b) The attacker gains nothing useful about the correct P from seeing ABCDE
 - (c) The correct P is the same plaintext corresponding to any previous portion of ciphertext equal to ${\tt ABCDE}$

Explanation:

- 6. The discrete logarithm problem in \mathbb{Z}_p^* is the basis for many public key cryptosystems. On conventional computers (not quantum computers) there is:
 - (a) no known polynomial time algorithm
 - (b) no known subexponential time algorithm
 - (c) no known exponential time algorithm

Explanation:

- 7. The security of RSA encryption is related to the problem of integer factorisation in the following way:
 - (a) if RSA cannot be broken then factorisation is hard
 - (b) if RSA can be broken then factorisation is easy
 - (c) If RSA is secure then factorisation may be easy or hard

Explanation:

- 8. The RSA encryption algorithm uses a public exponent e, a private exponent d, and a public modulus n. In order to speed up the decryption process, it is common to:
 - (a) choose a small value for e
 - (b) choose a small value for d
 - (c) apply the Chinese Remainder theorem

- 9. ElGamal encryption works in \mathbb{Z}_p^* . The ciphertext of a message *m* is a pair (g^k, my^k) . To avoid a known plaintext attack it is essential to:
 - (a) choose a new k for each encryption
 - (b) choose a new y for each encryption
 - (c) choose a new g for each encryption

Explanation:

- 10. Let h be the identity function, h(x) = x defined on bit strings of length 128-bits. This function does not meet the property of being:
 - (a) oneway
 - (b) collision-resistant
 - (c) second pre-image resistant

Explanation:

- 11. HMAC is a takes as input a key K and message M and outputs a tag T. Suppose that HMAC uses the hash function is SHA-256. If $HMAC(K, M_i)$ is computed for many different messages M_i (and a fixed K) then two identical tags will probably first appear after:
 - (a) 2^{16} tag values are computed
 - (b) 2^{128} tag values are computed
 - (c) 2^{255} tag values are computed

Explanation:

- 12. A difference between a message authentication code (MAC) and a digital signature scheme is:
 - (a) a signature must be randomised but a MAC tag need not be
 - (b) a MAC tag can be recomputed by the verifier but a signature cannot be
 - (c) a MAC provides data integrity but a signature does not

Explanation:

- 13. The Kerberos protocol makes use of a ticket containing four values $(K_{AB}, ID_A, ID_S, N_A)$ which is shared between a client A and server S. A suitable algorithm to use to protect these values would be:
 - (a) AES in GCM mode
 - (b) AES in CBC mode
 - (c) HMAC

- 14. A difference between TLS 1.3 and TLS 1.2 is:
 - (a) the TLS 1.3 handshake protocol always provides forward secrecy
 - (b) there are no known attacks on the TLS 1.3 protocol
 - (c) the TLS 1.3 record protocol includes data compression

Explanation:

- 15. Many email servers add a DomainKeys Identified Mail (DKIM) digital signature to outgoing mail. This signature:
 - (a) can be verified by any recipient of the email
 - (b) is verified and then removed by the receiving domain mail server
 - (c) can only be verified by the receiving domain

2 Written answer questions

1. Consider a variant of the Hill cipher which has the encryption equation

$$C = KP + L \bmod n$$

where the key has two parts, a 2×2 matrix K and 2×1 column vector L. The column vectors C and P represent the ciphertext and plaintext respectively. Here n is the size of the alphabet in use. In this question all matrices are 2×2 . If L = 0 then this variant is the same as the basic Hill cipher.

- (a) What is the decryption equation for this variant cipher?
- (b) What is the possible number of keys in this variant? Write an expression in terms of n and the number of keys of the basic Hill cipher.
- (c) Explain how an attacker can use a chosen plaintext attack to obtain the key with three chosen plaintext pairs.
- 2. A non-standard mode of operation for block ciphers has the following general equation for computing each output block: $C_t = E(P_t \oplus P_{t-1} \oplus C_{t-1}, K)$ where $C_0 = IV$ which is sent with the ciphertext and $P_0 = 0$ (the block of all 0 bits).

Alternate question:

 $C_t = E(P_t \oplus C_{t-1}, K) \oplus P_{t-1}$

- (a) What is the equation for decryption of ciphertext block C_t to obtain the plaintext block P_t ?
- (b) Suppose that there is an error in transmission when block C_t is sent to a recipient, so that one bit is changed. How many blocks, or partial blocks, are changed when the receiver decrypts? Explain your answer.
- (c) Is it possible to encrypt multiple plaintext blocks in parallel? Is it possible to decrypt multiple blocks in parallel? Explain your answers.
- 3. Two efficient tests for primality of an integer n are the Fermat test and the Miller–Rabin test. Both tests use a base value a chosen randomly in the range 1 < a < n 1 and are usually run for multiple bases. Suppose that the tests are being used to test n = 45.
 - (a) Show that $19^2 \mod 45 = 1$.

- (b) Show that the Fermat test will return that n = 45 is a probable prime if the value a = 8 is chosen.
- (c) Show that the Miller-Rabin test will return that n = 45 is composite if the value a = 4 is chosen.
- 4. Consider the Diffie-Hellman protocol in the group \mathbb{Z}_p^* . In order to add authentication to the basic Diffie-Hellman protocol it is common to use digital signatures. An alternative is to use a long-term key directly in the protocol. Suppose that A has long-term secret key x with public key g^x and B has long-term secret key y with public key g^y . The protocol is then as follows.
 - A chooses random a and sends the value $A = g^a$ to B.
 - B chooses random b and sends the value $B = g^b$ to A.
 - A computes the session key $K_{AB} = B^x (g^y)^a$, using the received message Y and the long-term key of B.
 - B computes the session key $K_{BA} = A^y (g^x)^b$, using the received message X and the long-term key of A.
 - (a) Show that A and B compute the same key: $K_{AB} = K_{BA}$.
 - (b) Show that this protocol does not achieve the forward secrecy property.
- 5. Two signature schemes commonly used today are RSA signatures and DSA signatures. Suppose that the RSA modulus n has length 2048 bits and the DSA modulus p has length 2048 bits with length of parameter q equal to 224 bits. You may assume that the DSA parameters p and q are fixed for all parties.

Alternate question: Parameters are |n| = 3072, |p| = 3072, |q| = 256.

- (a) RSA signatures often use a public exponent $e = 2^{16} + 1$. Approximately how much faster on average is signature verification with this value of e compared to when e is randomly chosen e?
- (b) What is the approximate ratio of the signature length, RSA against DSA?
- (c) What is the approximate ratio of the signing key length, RSA against DSA?
- (d) What is the approximate ratio of the verification key length, RSA against DSA?

- 6. Protection of metadata, typically included in header information in network protocols, is important in preserving privacy.
 - (a) Compare what cryptographic protection is available for IP metadata in (i) IPSec in tunnel mode and (ii) TLS between a client and server.
 - (b) Compare what cryptographic protection is available for email metadata in (i) PGP and (ii) STARTTLS.
 - (c) Is there a conflict between protection of metadata and end-to-end security? Discuss such a conflict in the context of the above two examples.