TTM4135 Information Security Exam June 6, 2005 --- solutions

Question	Choice		
	a	b	c
1		\checkmark	
2	\checkmark		
3			\checkmark
4		\checkmark	
5		\checkmark	
6			\checkmark
7			\checkmark
8	\checkmark		
9	\checkmark		
10	\checkmark		
11			\checkmark
12			\checkmark
13	\checkmark		
14			\checkmark
15	\checkmark		
16	\checkmark		
17		\checkmark	
18		\checkmark	
19		\checkmark	
20			\checkmark
21	\checkmark		
22			\checkmark
23	\checkmark		
24		\checkmark	
25	\checkmark		

26. The recommendation X.509, part of the X. 500 directory service recommendations, defines a format for public-key certificate that can be issued in a hierarchy of certification authorities. Figure 4.3 shows the formats.
27. 28) Verifiable signature 2) Within validity period.
1. Revocation because : 1) Change of authorization, for instance signer is not at the company anymore. 2) A private key is compromised or lost. 3) Certification system update, for instance algorithmic changes.
2. Invalidation by: 1) Time period expiration. or revocation list (CRL):
2) Revocation of issuer's public key. 3) Revocation of subject's public key.
30. See Section 5 of Security Lab Assignment, and Figure 4.4 in text book.
31. See textbook Figure 7.6.
32. Alice randomly selects two large prime number p and q, and computes $n:=p^{*} q$. Then she randomly selects d, conditioned on that d is relative prime to $p h i(n)$ and $0<d<p h i(n)$. Alice must keep p, q and d secret.
33. Alice must provide Bob with her public key (e,n), where $e:=d^{\wedge}-1 \bmod p h i(n)$. Bob verifies by checking whether $(s \wedge e \bmod n=m)$.
34. If there are no restrictions on m^{*} then there are no restrictions on s^{*}. Bob starts with a random s^{*} and computes $m^{*}:=s^{*} \ell e \bmod n$.
35. The hash function should satisfy: 1) Accept any length input. 2) Fixed length output. 3) 'Easy' to compute $y:=h(x)$. 4) Onewayness: ‘Hard’ to compute x given $h(x)$. 5) Strong collision-free: 'Hard’ to find a pair ($x 1, x 2$) such that $h(x 1)$ $=h(x 2)$.
36. Make $h()$ public. In signing and verification replace m with $h(m)$.
37. Alice computes $\mathrm{E}(K, m)$ and sends the result ($c, t)$ to Bob. Bob decrypts the message m by computing $c / t \wedge k \bmod p$.
sfm 20050606.
