TTM4135 Information Security Exam June 6, 2005 --- solutions

1-25

Question		Choice		
	a	b	с	
1		\checkmark		
2	\checkmark			
3			\checkmark	
4		\checkmark		
5		\checkmark		
6			\checkmark	
7			\checkmark	
8	\checkmark			
9	\checkmark			
10	\checkmark			
11			\checkmark	
12			\checkmark	
13	\checkmark			
14			\checkmark	
15	\checkmark			
16	\checkmark			
17		\checkmark		
18		\checkmark		
19		\checkmark		
20			\checkmark	
21	\checkmark			
22			\checkmark	
23	\checkmark			
24		\checkmark		
25	✓			

TTM4135 Information Security Exam June 6, 2005 --- solutions

- 26. The recommendation X.509, part of the X.500 directory service recommendations, defines a format for public-key certificate that can be issued in a hierarchy of certification authorities. Figure 4.3 shows the formats.
- 27. 1) Verifiable signature 2) Within validity period.
- 28. Revocation because : 1) Change of authorization, for instance signer is not at the company anymore. 2) A private key is compromised or lost. 3) Certification system update, for instance algorithmic changes.
- 29. Invalidation by: 1) Time period expiration. or revocation list (CRL):2) Revocation of issuer's public key.3) Revocation of subject's public key.
- 30. See Section 5 of Security Lab Assignment, and Figure 4.4 in text book.
- 31. See textbook Figure 7.6.
- 32. Alice randomly selects two large prime number p and q, and computes n := p*q. Then she randomly selects d, conditioned on that d is relative prime to phi(n) and 0 < d < phi(n). Alice must keep p, q and d secret.
- 33. Alice must provide Bob with her public key (e, n), where $e := d^{-1} \mod phi(n)$. Bob verifies by checking whether $(s^{e} \mod n = m)$.
- 34. If there are no restrictions on m^* then there are no restrictions on s^* . Bob starts with a random s^* and computes $m^* := s^* e \mod n$.
- 35. The hash function should satisfy: 1) Accept any length input. 2) Fixed length output. 3) 'Easy' to compute y := h(x). 4) Onewayness: 'Hard' to compute x given h(x). 5) Strong collision-free: 'Hard' to find a pair (x1, x2) such that h(x1) = h(x2).
- 36. Make h() public. In signing and verification replace *m* with h(m).
- 37. Alice computes E(K,m) and sends the result (c, t) to Bob. Bob decrypts the message *m* by computing $c/t^k \mod p$.

sfm 20050606.