

Department of Telematics

Examination paper for TTM4135 Information security

Academic contact during examination: Colin Boyd

Phone: 73551758

Examination date: 2016-08-18

Examination time (from-to): 09:00 - 12:00

Permitted examination support material: (D) No printed or hand-written support material is allowed. A specific basic calculator is allowed.

Other information: -

Language: English Number of pages: 2 Number of pages enclosed: 0

Checked by:

Date

Signature

TTM4135 August exam 2016: Outline answers

Exercise 1 Multiple choice questions

1.	(a) 🗹	(b)	(c)	(d)
2.	(a)	(b)	(c) 🗹	(d)
3.	(a)	(b)	(c)	(d)
4.	(a)	(b)	(c)	(d)
5.	(a)	(b)	(c)	(d)
6.	(a)	(b)	(c)	(d)
7.	(a)	(b) 🗹	(c)	(d)
8.	(a)	(b)	(c) 🗹	(d)
9.	(a)	(b) 🗹	(c)	(d)
10.	(a)	(b)	(c) 🗹	(d)
11.	(a)	(b) 🗹	(c)	(d)
12.	(a)	(b)	(c)	(d)
13.	(a)	(b)	(c)	(d)
14.	(a)	(b)	(c)	(d)
15.	(a)	(b)	(c)	(d)
16.	(a)	(b)	(c)	(d)
17.	(a)	(b)	(c)	(d)
18.	(a)	(b)	(c)	(d)
19.	(a)	(b)	(c) 🗹	(d)
20.	(a)	(b) 🗹	(c)	(d)
21.	(a)	(b)	(c)	(d)
22.	(a)	(b) 🗹	(c)	(d)
23.	(a)	(b)	(c)	(d)
24.	(a)	(b)		(d)
25.	(a)	(b) 🔽	(c)	(d)

Exercise 2 Written answer questions

C

1. (a)

$$= KP$$

$$= \begin{pmatrix} 4 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 2 & 0 \end{pmatrix}$$

(b)

$$K^{-1} = 4^{-1} \begin{pmatrix} 2 & -2 \\ -2 & 4 \end{pmatrix} \mod 5$$
$$= 4 \begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$$

(c)

$$P = K^{-1}C$$
$$= \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 3 & 2 \end{pmatrix}$$

- 2. (a) $P_t = D(C_t, K) \oplus C_{t-1}$
 - (b) From the encryption equation we see that encryption requires the previous ciphertext block. So parallel encryption is not possible.
 - (c) From part (a) we see that decryption only uses ciphertext blocks which are already received. Therefore parallel decryption is possible.
 - (d) If one bit is flipped in one ciphertext block, say C_t , we see from the decryption equation that this affects two decrypted blocks, P_t and P_{t+1} . For P_t we can expect a random change in all bits, but for P_{t+1} only the position of the bit flip in C_t will be changed.
- 3. (a) $M = s/r^x \mod p$ where $y = g^x$.
 - (b) Suppose the attacker knows that M_1 is the plaintext for $C_1 = (r_1, s_1)$. Then he obtains $y^k = s_1/M_1$. For any other ciphertext $C_2 = (r_2, s_2)$ he can then obtain $M_2 = s_2/y^k$.
- 4. $M_p = C^{17 \mod 4} \mod 5 = 2^1 \mod 5 = 2$

 $M_q = C^{17 \mod 6} \mod 7 = 2^5 \mod 7 = 4$

 $M = (2 \times 7 \times 7^{-1} \mod 5) + (4 \times 5 \times 5^{-1} \mod 7) = (14 \times 3) + (20 \times 3) \mod 35 = 32.$

- 5. (a) The recipient must share the key K and so can recompute the tag T for the received message M. If this agrees with the received tag then the message is accepted as authentic.
 - (b) Given M and T the attacker computes $H(K) = T \oplus H(M)$. Then $T' = H(M') \oplus H(K)$ can easily be computed by the attacker.
- 6. (a) The ticket contains the key $K_{C,V}$ from the ticket granting service so the purpose is to allow V to obtain and to verify the authenticity and freshness of this shared key. The authenticator is generated by C to convince V that C is currently active (entity authentication).
 - (b) On receipt of the second message C should decrypt and check that the timestamp is still current. Since V is the only other party which possesses $K_{C,V}$ it is the only party who could have formed a correct second message.
- 7. (a) The advantage of using elliptic curves compared with using groups \mathbb{Z}_p^* is that the keys and public key (Diffie-Hellman values) can be shorter for the same security level.
 - (b) Only with ephemeral Diffie–Hellman values can forward secrecy be obtained. Static DH uses long-term keys which, if revealed, give away the DH shared secret.
 - (c) ECDSA signatures are used to authenticate the ephemeral Diffie–Hellman values exchanged in the handshake protocol.
 - (d) User data is authenticated using GCM mode which has a built-in authentication check.