Imaginære og komplekse tall Den imaginære enheten <i>i</i> er definert slik at $i^2 = -1$ Med $\sigma \cos b$	Derivasjonsregler A La $f(x)$ og $g(x)$ være deriverbare funskjoner av variablen x .	Ubestemte integraler
reelle tall kalles: z = ib et imaginært tall,	Følgende regneregler gjelder: $\frac{d}{d} \left(f(x) + \sigma(x) \right) = \frac{d}{d} f(x) + \frac{d}{\sigma(x)}$	$\int \left(a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \right) dx = a_0 x + \frac{a_1}{2} x^2 + \dots + a_n x^n = a_n x + \frac{a_1}{2} x^2 + \dots + a_n x^n = a_n x + \frac{a_1}{2} x^2 + \dots + a_n x^n = a_n x + \frac{a_n}{2} x^n + \dots + a_n x^n = a_n x + \frac{a_n}{2} x^n + \dots + a_n x^n = a_n x + \frac{a_n}{2} x^n + \dots + a_n x^n = a_n x + \frac{a_n}{2} x^n + \dots + a_n x^n = a_n x + \frac{a_n}{2} x^n + \dots + a_n x^n = a_n x + \frac{a_n}{2} x^n + \dots + a_n x^n = a_n x + \dots + a_n x^n + \dots + \dots + a_n x^n + \dots + \dots + a_n x^n + \dots + a_n x^n + \dots + a_n x^n + \dots + \dots + a_n x^n + \dots + a_n x^n + \dots + a_n x^n + \dots + $
z = a + ib et komplekst tall, $z^* = a - ib$ det tilhørende konjugerte komplekse tall. a kalles realdelen ($a - B = z$) h innommalater (t	$\frac{dx}{3x} (y(x)g(x)) = g(x) \frac{d}{3x} f(x) + f(x) \frac{d}{3x} g(x)$	$+\frac{a_2}{3}x^3+\ldots+\frac{a_n}{n+1}x^{n+1}+C$
$z_1 \pm z_2 = (a_1 \pm a_2) + i(b_1 \pm b_2)$	$\frac{dx}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - g'(x)f(x)}{g(x)^2}$	$\int e^{\lambda x} dx = \frac{1}{\lambda} e^{\lambda x} + C \qquad \int \sin x dx = -\cos x + C$
$z_1 \cdot z_2 = (a_1a_2 - b_1b_2) + i(a_1b_2 + a_2b_1)$ $\frac{z_1}{z} = \frac{a_1a_2 + b_1b_2}{z-1+z^2} + i\frac{a_2b_1 - a_1b_2}{z-1+z^2}$	2) Dersom $y = f(u)$ og $u = g(x)$ er deriverbare i passende områder, gjelder:	$\int a^{x} dx = \frac{a^{x}}{\ln a} + C \qquad \int \cos x dx = \sin x + C$
$z \cdot z^* = (a + ib)(a - ib) = a^2 + b^2 = z ^2$	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = f'(u)g'(x).$	Bestemte integraler
Med $a = r \cos \varphi$, $b = r \sin \varphi$, $r = \sqrt{a^2 + b^2}$ følger:	vasjonsformler d	$\int f(x)dx = F(x) + C \implies \int_{a}^{b} f(x)dx = F(b) - F(a)$
$z = a + ib = r(\cos \varphi + i \sin \varphi), = r e^{iT}$ $z^* = a - ib = r(\cos \varphi - i \sin \varphi), = r e^{-iT}$ $r = z \text{ kalles absolutiverdien, } \varphi = \arg z \text{ argumentet til } z, \text{ og}$	$\frac{da}{dx} = 0, \qquad a = \text{konst}$ $\frac{dx^n}{dx} = nx^{n-1}, \qquad \frac{dx}{dx} = 1$	$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$
tilsvarende er: $r = z^* , -\varphi = \arg z^*$. $e^{it} = \cos t + i \sin t$		$\int_{a}^{b} \left[f(x) \pm g(x) \right] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$
Trigonometriske funskjoner De trigonometriske finksionene kan defineres ved	Sum og differens av funksjoner sin $x + \sin v = 2 \sin \frac{x \pm y}{\cos \frac{x \mp y}{\cos \frac{x + x + y}{\cos \frac{x + x + y}{\cos \frac{x + x + x}{\cos \frac{x + x + x}{\cos \frac{x + x + x + x + x}{\cos x + x $	$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx + \int_{c}^{b} f(x) dx$ $\int_{b}^{b} u dv = u(b)v(b) - u(a)v(a) - \int_{c}^{b} v du$
$\sin x = \frac{e^{ix} - e^{-ix}}{2} \qquad \cos x = \frac{e^{ix} + e^{-ix}}{2}$	$2 \qquad 2 \qquad 2 \qquad \sin 2x = 2 \sin x \cos x$ $\cos x + \cos y = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$, a
nometris	$\cos x - \cos y = -2 \sin \frac{x + y}{2} \sin \frac{x - y}{2}$ $\cos 2x = \cos^2 x - \sin^2 x$	$\sum_{k=1}^{n} q^{k-1} = \frac{1-q^n}{1-q} \qquad \sum_{k=4}^{\infty} q^{k-4} = \frac{1}{1-\frac{q}{q}}, q ,$
$\sin^2 x + \cos^2 x = 1$ $\tan x = \frac{\sin x}{\cos x} = \frac{1}{2}$ P	Produkt av funksjoner	
$\sin\left(x + \frac{\pi}{2}\right) = \cos x \qquad \cos\left(x + \frac{\pi}{2}\right) = -\sin x$	$2 \sin nx \sin mx = \cos(n - m)x - \cos(n + m)x \\ \sin \frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{2}}$ $2 \cos nx \cos mx = \cos(n - m)x + \cos(n + m)x$	Kvadratiske ligninger
$\sin(-x) = -\sin x \qquad \cos(-x) = +\cos x$		En annengradsligning med én ukjent kan skrives: $2^{2} + h_{2} + c = 0$ $(a \neq 0)$
$\tan(-x) = -\tan x \qquad \cot(-x) = -\cot x$	Addisjonsteoremer: $\cos\frac{2}{2} = \pm\sqrt{\frac{1+\cos\frac{2}{2}}{2}}$	×
	$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$	$\frac{1}{2}$ = $-\frac{b}{2}$ + $\frac{\sqrt{b^2 - 4ac}}{\sqrt{b^2 - 4ac}}$
	$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$	$^{-1,2}$ $2a$ $2a$ $2a$

Analog signals and systems

Fourier series (for signals with period T_0)

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j\frac{2\pi k}{T_0}t}$$
$$c_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-j\frac{2\pi k}{T_0}t} dt$$

Fourier transform and its inverse:

$$\begin{split} X(\omega) &= \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \\ x(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega \end{split}$$

Electrical components

Resistor: v(t) = Ri(t)Capacitor: $i(t) = C \frac{dv(t)}{dt}$ Inductor: $v(t) = L \frac{di(t)}{dt}$

Discrete signals and systems

Fourier series (for signals with period N)

$$\begin{aligned} x(n) &= \sum_{k=0}^{N-1} c_k e^{j \frac{2\pi k}{N} n} \\ c_k &= \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j \frac{2\pi k}{N} n} \end{aligned}$$

Fourier transform and its inverse:

$$X(\hat{\omega}) = \sum_{n=-\infty}^{\infty} x(n) e^{-j\hat{\omega}n}$$
$$x(n) = \frac{1}{2\pi} \int_{2\pi} X(\hat{\omega}) e^{j\hat{\omega}n} d\hat{\omega}$$

Discrete Fourier transform (DFT) of length N

$$\begin{aligned} X_N(k) &= \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi k}{N}n}, \, k \in [0, N-1] \\ x(n) &= \frac{1}{N} \sum_{k=0}^{N-1} X_N(k) e^{j\frac{2\pi k}{N}n}, \, n \in [0, N-1] \end{aligned}$$

Information and comm. theory

Information content: $I(x) = \log_2 \frac{1}{p(x)}$ Channel capacity: $C = \frac{1}{2} \log_2(1 + \frac{P}{\sigma_w^2})$

Nyquist criterion

Time domain:

$$g(lT + \Delta t) = \begin{cases} 1, & l = 0\\ 0, & l \neq 0 \end{cases}$$

Frequency domain:

$$\sum_{m=-\infty}^{\infty} G(f + \frac{m}{T}) = T$$