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Problem 1

a. The unit sample response is the output signal of a linear, shift invariant
system when a unit sample is input. It can be therefore be found experi-
mentally by first inputting a signal component of unit size, and thereafter
only zeros.

b. BIBO stability means bounded input bounded output. That is, if a signal
is amplitude limited: |z(n)| < S, then the output signal is also bounded:
ly(n)| < Ss. The two bounds S; and S, can be different.

The following implications apply (Not necessary for a complete answer):

L. > o |h(n)] < co. (Causality assumed.)

2. The roots of the characteristic polynomial of its difference equation
must satisfy |ax| < 1.

For an unstable system the unit sample response will increase in the sense
that its envelope will be an increasing function. An example can be gen-
erated by the difference equation y(n) = ay(n — 1) + z(n), where a > 1.
Then the unit sample response is given by h(n) = a"u(n). This will then
be an exponentially increasing function.



An analog filter is given in the figure.
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. To find the relation between the input signal v;(¢) and the output signal
v9(t), we use Kirchhoffs voltage and current relations. Define by i(t) the
current through the resistor R;. The voltage balance can be stated as:

1. ’Ul(t) = Rll<t) + Ug(t).

The current i(t) is split between the capacitor and the resistor Ry, and can
therefore be calculated as:

. dv [
2. i(t) = C%2l) 4 20

We insert this relation into the previous equation and thus obtain an equa-
tion with just the input- and output signals and the known components.
After a small rearrangement we obtain:

RlCdU;ft) + <1 + %) va(t) = vy (t).

. When Fourier transforming the left hand sides of the differential equation,
we have to know, or derive (see pages 107-108) that

]:{dz_(tt)} = jQV(jQ) when F{v(t)} = V(j9Q).

Then by transforming term by term we obtain

RCIOGR) + (14 7 ) 19 = Vi),

2
Solving for the frequency response we get
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Vi(j§2) 1+%+]’QR1C.
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. Given the differential equation we could also find the frequency response
by

1. Solving for the impulse response (solution with zero initial conditions
and a Dirac delta function as input), and then Fourier transforming
the impulse response.



2. Applying a complex exponential function of the form v;(t) = ¢/* and
assuming that the output signal is of the same form, that is vs(t) =
He/, Inserting this into the differential equation and solving for H,
we get the same result.

3. Direct use of frequency domain relations that can be derived directly
from the circuit diagram:

Vi(iQ) = RiI(j2) + Va(§Q2).
and .
Va(j9)
Ry
Combining these equation and solving with respect to H(5$2) = V2(5Q)/V1(59),
we obtain the same result as above.

1(j92) = jQCV2(jQ) +
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a. There are two reasons why signals can be compressed:

First, the signals that can be interpreted by human observers have to be
redundant. This means that signal samples are statistically dependent. Sig-
nal decomposition can be used to remove redundancy for obtaining more
efficient representations.

Second, the human perception system is not perfect. Certain types of noise
can not be detected while the signal is present and the noise level is low
enough. In addition, different modes in communication require different
quality standards. Totally distortionless transmission might not be neces-
sary at all times. For a more detailed description, see page 180 to 181 of
the textbook.

b. Differential Pulse Coded Modulation (DPCM) operates as the following:
In the encoder, predictor P is used to predict the current value of = based
on previous values. The quantizer then quantizes the prediction error d



which is the difference between = and z. The quantization index b is being
coded and transmitted (with entropy coding for example). Through the
inverse quantization block Q~!, we obtain the quantized prediction error
e. e is then combined with predicted value of z, Z, and fed through the
predictor to produce a new predicted value . The predictor P must contain
at least one delay.

The decoder is actually embedded in the encoder. The inverse quantization
process recovers the quantized prediction error e, which is combined with
the predicted value & to form the decoded . The same predictor P is used.
The main advantage of DPCM is that the predictor is able to remove /reduce
redundancy in the input signal so the much lower dynamic range is needed
for the quantizer and fewer bits are required for transmission. Hence we
have compression.

. When the input signal is an AR(1) process, the optimal predictor then
contains only one prediction coefficient p, which is the same as the one that
forms the AR(1) process, and one delay. The prediction error variance o2
is minimized and can be calculated by (1 — p?)o2. The prediction error
sequence is also white when an optimal predictor is used.

. Since we are quantizing at 3 bits, we can use the approximation formula for
calculating the quantization noise variance for a uniform quantizer. With 8
levels and range of 4, we have quantization step A = 4/8 = 1/2. This will
also be the noise variance at the output because the noise is unchanged in
the receiver.

, A7 1/4

= - Loy
TRt

. To avoid overloading of the quantizer, the uniformly distributed quantizer
input has to have range from -2 to 2. This means the quantizer input vari-

ance
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The maximum allowed input signal variance o can be calculated by

2 &z _ 4/3
T l—p? 1-.92

= 7.0175.



Problem II1

a.

ii.

Two continuous functions r(¢) and s(¢) defined over the interval ¢ € [T}, T5]
are orthogonal if

/ s (b = 0.

T

Two discrete time functions 7(n) and s(n) defined over the interval n €
[N1, Ny are orthogonal if

Z r(n)s*(n) =0.

Ny

The basis function

bo(t) = sine(t/T) = %sin(w(t/T)) J(x(t/T)).
has the Fourier transform

1for —7/T <Q<7/T,
0 otherwise .

Do (j€2) = {

Using the shift property of the Fourier transform (given in the enclosure of
the exam), we obtain

@, (5) = e TP ().
By using Parseval’s relation we obtain
1 [T , 1
/ On(t)pr(t)dt = / n(J)PL(Q)dQY = — e ST TG0y — — 5,
2m —/T T

that is, the integral is equal to zero whenever £ # n. This proves the
orthogonality.

Using Parseval’s relation, the integrand in the frequency domain is going
to be zero everywhere as the two functions do not overlap.



d. A receiver structure for a system which transmits Ksimultaneous symbols
is shown in the figure.

1w a(l, 1)

xﬂ— (1) a(l,2)

o) a(l, K)
Figure 1:

The filters are matched to the received symbols, that is the impulse response
of channel k is given by ry(t) = hy(T;—t), where hy(t) is the received signal
in that channel when one symbol has been sent at t = 0 and 7} is the length
of that symbol. The matched filters are followed by samplers which measure
the signal at the correct detection points.

e. Finite length signals with infinite bandwidth can be orthogonal even if their
Fourier transforms overlap. This means that the signals overlap both in the
time and frequency domains. This is, of course the case in part b. In general,
for two real functions that overlap to be orthogonal, their product have to
have positive and negative parts. This mechanism is easy to understand if
one function is symmetric and the other is antisymmetric.

For the complex case, it is more involved. Then the product of the two
functions must have components in all different directions in the complex
plain that cancel when they are “summed”.



