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Problem 1 [14 points]
(a) [2 points]

We need to find a differential equation describing the relation between the input voltage
z(t) and the output voltage y(t), both of which are defined in Fig. 1 of the problem
statement.

Let i(t) denote the current flowing through resistor Ry, and 41 (¢) and i2(¢) respectively
denote the currents flowing through capacitor C' and resistor Ro, the flow directions of
i(t), 11(t), and i2(t) being chosen in such a way that

z(t) = Rii(t) +y(¢),
y(t) = i2(t) Re,
’il(t) = Cdz—it),
and
Z(t) = il(t) + ’ig(t).
We then see that

2(t) = Ry {odf'il—g” + %)] +y(t),
ro® | (1 T g_;) y(t) = (1), M

which is the relation we were seeking.

(b) [5 points] Taking the Fourier transform of (1), we obtain

RIC jQY(Q) + (1 + %) Y(Q) = X(Q),

where X (Q2) and Y (2) respectively denote the Fourier transforms of z(t) and y(¢). The
frequency response H () of the filter with input z(¢) and output y(¢) is thus given by
Y(Q) 1

X(©Q) RCjQ+1+87

H(Q) =

The magnitude and phase response of the filter in question can be respectively obtained
by taking the magnitude and phase of H (). This yields

1
\/(1 + %)2 + (R,C Q)°

1

|H(Q)| =




for the magnitude response, and

1
19 =~ e
=4 {1 + u —I—jQRlC}
Ry
QR.C
1+

= — arctan

for the phase response, where the last equality follows from the fact that 1+ 1}%—; > 0 for
all R1, Ry > 0.

It can be easily seen that the magnitude response |H({2)| is a monotonically decreasing
~1

function of 2, and that |[H(0)| = (1 + g—;) . Therefore, the filter with transfer function

H(Q) attenuates more high frequency components than low frequency components, and

is thus a low-pass filter.

[2 points] The impulse response h(t) of the filter can be obtained by taking the inverse
Fourier transform of its transfer function H(£2). In order to do so, remember first that

1
a+ j’

Fle ™u(t)} =

where u(t) is the unit step function and a # 0. Bearing in mind that H(Q) can be

re-expressed as
1

R.C B
HQ) = 5o & — o
B+ a0

we see that
h(t) = f_l{H(Q)} = ﬂe‘atu(t).

[6 points] To find the filter’s response y(t) when the input signal is
() = 10 cos(1000t) + cos(3000¢ + /4),

we need to know its amplitude and phase responses at the angular frequencies 2y =
1000 rad/s and €25 = 3000 rad/s. We obtain, using the values Ry = 1kQ, Ry = 10k,
and C = 1uF:

H(1000)| = ——— ~ 0.67,
[H(1000) 1.1+ 4|
1

H(3000)| = —— ~0.31,
[H(3000)| = 5957

1
£ H(1000) = — arctan i1~ —0.74 rad,

3
£H(3000) = — arctan 1~ —1.22 rad.

The filter’s response y(t) to this signal is thus given by
y(t) = 6.7 cos(1000t — 0.74) + 0.31 cos(3000¢ + 7/4 — 1.22).



Now, if the input signal to the filter is given by z(t) = u(t), we can find the output y(¢)
by using the equation

We obtain, when z(t) = u(t) and h(t) = Be~*u(t),

/ Be T u( (t—'rdT—/ Be”*Tu(t — T)dr

0 if t<0,

t
/0 Be T dr = —g [e_m]g = p [1—e] if t>0,

o

/3 Ry _ 10 _ Ri1+Ry __
= iR — 110 98 @ = R0 — 1100.

Here we have used the fact that u(7) = 0 for 7 < 0, and similarly u(t —7) = 0 for 7 > t¢.

where




Problem 2 [13 points]

(a)

(b)

[3 points]
e The spectrum X, (F) of a signal z,(t) is not periodic. The signal z,(t) is therefore
continuous.

e The spectrum X, (F') shown in Fig. 2 of the problem statement is continuous. The
signal z,(t) is therefore not periodic.

e The spectrum X,(F) of z,(t) is a real and even function. The signal z,(t) is
therefore also a real and even function.

[4 points] We can avoid aliasing when sampling at a frequency Fj if the signal which
is sampled is bandlimited to F,/2. The signal z,(¢) having a spectrum X, (F) which
is bandlimited to 4 kHz., the lowest frequency we can sample it at if we want to avoid
aliasing (without using an antialiasing filter) is Fi;, = 8 kHz.

If a signal z(n) is obtained by sampling an analog signal z,(¢) with sampling frequency
F, the relation between the spectrum X (f) of z(n) and the spectrum X, (F) of z,(t)

is given by
X|=|=F g X, (F — kFy)
Fs S a S)*

k=—o0

Using also the relation f = FES (where f is the digital frequency), it is easy to draw the
figure shown below.
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Figure 1: Spectrum X(f) of the sampled signal z(n)

[6 points] If we want to avoid aliasing when sampling the signal z,(t) at a frequency
F, = %me, all the frequency components of z,(¢) which are above % = %Fmin must
first be removed using an antialiasing filter. The magnitude response |H(F')| of an
ideal antialiasing filter which removes all the frequency components in z,(t) above % =
%me = 3kHz. while at the same time degrading z(¢) as little as possible is shown in
Fig. 2.

The amplitude spectrum |A(F')| of the signal at the output of this antialising filter (with
input z,(t)) is depicted in Fig. 3.

The amplitude spectrum | X (f)| of the sampled signal z(n) as a function of the digital
frequency f when this antialiasing filter is used is shown in Fig. 4.
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Figure 3: Amplitude spectrum |A(F')| of the signal at the output of the antialiasing filter
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Figure 4: Amplitude spectrum | X (f)| of the sampled signal z(n) when the antialiasing filter
is used.



Problem 3 [18 points]

(a) [5 points] e(n) being a white noise process with variance 0%, = 4, its autocorrelation
function Rrg(k) is given by

Rigp(k) = 0%6(k) = 45(k).

The AR(1) process z(n) is generated by sending white noise through a filter described
by the difference equation

z(n) = azx(n — 1) + e(n),
where a = 0.9.

Autocorrelation function is given by

Rxx(k) = E[z(n)z(n—k)]
= El(azx(n —1) +e(n))z(n — k)]
= aFE[z(n —1)z(n — k)] + Ele(n)z(n — k)]
= aRxx(k—1)+ Ele(n)z(n — k)].

Assume first that & > 0. If we denote the unit step response of the filter by h(n), and
take into account that the filter is causal, we have that

z(n—k) =h(n—k) xe(n—k) =Y _h(l) e(n -k —1),
=0
and thus
E[e(n) Zh )E [e(n) e(n —k —1)] =0,

where the last equality follows from the fact that white noise has uncorrelated samples.
Autocorrelation function for k£ > 0 is therefore given by

Rxx(k) = G,RX)((]C — 1).

When k& = 0, we have

Rxx(0) = E [2°(n)] = E [(a:c(n -1) n))?]
= a’E [2*(n — 1)] + E' [e*(n)] + 2aE [z(n — 1)e(n)]
= a’Rxx(0) + o,

where we have taken into account that e(n) has zero mean. We thus obtain

g
Fx(© = 15

Remembering that Rx x(—k) = Rxx (k) and combining the above equations, we obtain

2
g
Rxx (k) = Rxx(0) al*l = ﬁ a*l =21.05-0.9/".
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Figure 5: Autocorrelation function Rgg(k) of the process e(n)
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Figure 6: Autocorrelation function Rx x (k) of the process z(n)



(b)

The autocorrelation functions Rgg(k) and Rxx (k) are respectively represented in
Figs. 5 and 6.

The autocorrelation function Rz (k) of a stochastic process z(n) evaluated at the value
k tells us how much statistical dependence there is between two samples of z(n) at dis-
tance k from each other. If Rzz(k) is high then there is a strong statistical dependence
between z(n) and z(n — k) (i.e. knowledge of z(n — k) gives a lot of information about
z(n)). Therefore, it is natural to expect that Rpr(k) = 0 when k # 0, because the sam-
ples of a white noise process are uncorrelated. However, the samples of the stochastic
process z(n) are related to each other through the relation

z(n) =0.9z(n — 1) + e(n),

and it is thus natural to expect a high correlation between samples of x(n) that are
close to each other, i.e. large values of Rxx (k) for small values of k.

[2 points| The power spectral density Sx x(w) of the stochastic process z(n) is given by

0 [e's)
= Z Rxx(k)e_jwk + ZRX)((k)e_jwk — RX)((O)
k=—o00 k=0

o0 o
=Y Rxx(—k)e’* + > Rxx(k)e ¥ — Rxx(0)
k=0 k=0

00 00
= Rxx(0) ZakejWk + Rxx(0) Zake—jwk — Rxx(0)
k=0 k=0

1 1
= Rxx(0) (1 “aee T 1 aedw 1)

— R (O) 1-ad° _
T XX T acosw+ a2 1— 2acosw + a?

4
~ 1—1.8cosw+0.81’

2
9

where we have used the fact that a = 0.9 < 1 to evaluate the geometric series, and the

. Jw 4 e—iw
relation cosw = %

[4 points] The uniform quantiser Q, with N = 32 quantisation levels, has to cover the
interval [—30, 30], where o is the standard deviation of the signal input to the quantiser.
The length A of a quantisation interval is thus given by

6 3
A=22_°29
32 16
Let g(n) denote the quantisation noise, i.e. the difference between the quantiser input

signal and the quantiser output signal. It can be shown that aé R % for a uniform

quantiser. Using this approximation, we see that when the signal z(n) is input to Q,



the quantisation noise variance becomes

90%  9Rxx(0) 9-21.05
256-12  256-12 256 -12

og & ~ 0.062,

where we har used the fact that z(n) has zero mean, and thus 0% = Rx x (0).

[6 points] Knowing that Z(n) = ax(n — 1), we need to find the value of o which
minimises the variance of the prediction error d(n) = z(n) — £(n). Remembering that
z(n) = ax(n — 1) + e(n), we have that

d(n) =(a — a)z(n — 1) + e(n),
and hence

op =E [((a - a)a(n — 1) + e(n))’]

= (a — a)Qog( + 0%,

since e(n) and z(n — 1) are uncorrelated. We thus see that in order to minimise 0%, we

have to choose a = a, i.e. @ = 0.9, and that the prediction error variance is then given
by 0% = o%.

We now need to compute the variance 0% of the signal r(n) = y(n) — z(n) when a = a.

We see that the reconstruction error equals the quantisation error of the quantiser Q
with input d(n). The reconstruction error variance is thus given by

90%,  90% 9.4
256 -12 25612 256 -12

0%~ ~ 0.012,

: 2 _ 2 _
since 0, = o, when o = a.

[2 points] The noise variance introduced by DPCM is over 5 times smaller than when
direct quantization is used. This was achieved by quantising the prediction error d(n)
instead of the signal z(n) itself.

The gain was made possible by the fact that z(n) is a highly correlated signal. The
prediction error has therefore a lower variance than the signal z(n) itself.



Problem 4 [10 points]

(a)

[2 points] The quantity

I = log, (%) ]

known as the information content of an event with probability p has the following
properties:

e the more uncertain an event (the lower p), the larger its information content

e the information content of an event with probability one is zero, i.e. no information
is gained by observing a certain event

e the information content is additive: the information gained by observing two in-
dependent events is the sum of the information contents of each one of the events

and is thus a good measure to quantify the amount of information gained by observing
an event with probability p.

[3 points] The entropy H of a discrete memoryless source producing symbols with prob-
abilities p1,...,pn is the average amount of information that is gained by observing a
symbol produced by the source, namely

N
1 ..
H=FE{I} =) plog - [bit]
i=1 t

The entropy of a discrete memoryless source generating four symbols with probabilities
PL=13,P2 =1, P3 = 5, and py = g is given by

1
8

L

1 1
H:§log22+110g24+ 3

logy 8 + = log, 8 = 1.75 bits/source symbol.

[6 points] The code given in the problem statement is uniquely decodable because no
codeword is the prefix of any other codeword.

The average number of bits per source symbol for this code is

L = lip1 + lops + I3ps + lapa,

where [; denotes the length of the codeword associated to the event with probability p;.
We thus obtain

- 1 1 1 1
L=1--+4+2.- - .z
2+ 4+3 8+3 3

= 1.75 bits/source symbol.

The lower limit for the average codeword length that is necessary to code a discrete
memoryless source is given by its entropy. Since here L = H, we see that there is
no code with shorter average codeword length than that of the code suggested in the
problem statement.

10



