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Problem 1 [17 points]

(a) [6 points] The digital filter’s frequency response H (w) is given in polar form, i.e. H(w) =
|H(w)| e*«) where |H(w)| = 0.8cosw + 0.9 is the filter’s amplitude response, and
¢(w) = —w is the filter’s phase response (this being because 0.8 cos w + 0.9 is a positive
real number for all w).

We determine the filter type by looking at the behaviour of |H(w)|. |H(w)| is a mono-
tonically decreasing function for w € [0, 7], satisfying |H(0)| = 1.7 and |H(7)| = 0.1. It
is depicted in Fig. 1.
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Figure 1: Amplitude response

Since the filter lets low frequencies through and attenuates high frequencies, we have a
low-pass filter.

The group delay of the filter 74(w) is given by

(@) = ——d‘flg") _1

We now need to find the amplification and phase delay of the filter at the digital fre-
quency f = %. We have w = 27 f = %. The filter amplification is thus given by

3
‘H (g)‘ — 0.8 cos % 0.9 = 0.8% +0.9 ~ 1.47 times,

and, since

we have a phase delay of 7/4 radians.



(b) [7 points] The relation between the unit sample response h(n) and the impulse response
H(w) of the filter is

o
H(w) =DTFT{h(n)} = > h(n)e ™ (1)
n=-—00
We also have
ev 4 e Iw

H(w) =e™ ¥ (0.8 5

+ 0.9) =04+04e72 0.9, (2)

We hence conclude, by comparing (1) and (2), that

04 ifn=0o0rn=2,
h(n) = 0.9 ifn=1,
0 otherwise.

In order to find a difference equation describing the relation between the input and
output signals of the filter in the time domain, we write

H(w) = —~% =04+ 0.4e™7% 4 0.9¢77%,
w

where X (w) = DTFT{z(n)} and Y (w) = DTFT{y(n)} respectively denote the discrete-
time Fourier transforms (DTFT) of the time domain signal z(n) (filter input) and the
time domain signal y(n) (filter output). We thus have

Y (w) = 0.4X (w) + 0.4X (w)e 72 4 0.9X (w)e ¥,

and by taking the inverse discrete-time Fourier transform (IDTFT) of the above equa-
tion, we obtain

y(n) = 0.4z(n) + 0.4z(n — 2) + 0.9z(n — 1),
where we have made use of the fact that DTFT{z(n — k)} = X (w)e™7*.

The impulse response h(n) having finite length (equal to 3), this is an FIR (finite impulse
response) filter.

A possible filter structure for the filter is shown below.
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(c) [4 points] We obtain
Hipt(w) = Hi(w) - (Hi(w) + Ha(w)) - Ho(w),

and
hiot(n) = hi(n) * (hi(n) + ha(n)) * ha(n).



Problem 2 [13 points]

(a) [3 points] Since the sampling period is 75 = 0.125 ms., the sampling frequency is

F, = = 8 kHz.

1
T

If a signal z(n) is obtained by sampling an analog signal s(¢) with sampling frequency
F; (t = n/Fs), the relation between the spectrum X (f) of z(n) and the spectrum S(F)

of s(t) is given by
F o

k=—o0

Using also the relation f = Fﬂs (where f is the digital frequency), it is easy to draw the
figure shown below.
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Figure 2: Spectrum X (f) of the signal z(n) for f € [-1,1] (Fs = 8 kHz.)

(b) [4 points] We can avoid aliasing when sampling at a frequency Fj if the signal which is
sampled is bandlimited to F;/2. The antialiasing filter must therefore block all frequency
components satisfying F' > F;/2 contained in the signal that is input to it, and leave

unaffected all frequency components satisfying F' < F;/2 contained in the signal that is
input to it.

For the given s(t) and Fs = 8 kHz., this means that the antialiasing filter must leave the

frequency components at ' = 1 kHz. and F' = 3 kHz. unaffected, whereas the frequency
component at F' = 6 kHz. must be blocked.

This can be for example realised by a filter having the amplitude response sketched in
Fig. 3. The amplitude spectrum of z(n) when this filter is used is shown in Fig. 4.
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Figure 3: Amplitude response of a filter satisfying the criteria exposed in problem 2(b).
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Figure 4: Amplitude spectrum | X (f)| of the signal z(n) for f € [—1,1] when the antialiasing
filter from Fig. 3 is used.



(c) [6 points] The signal zs(t) has the same spectrum as the signal z(n). This is shown in
the following;:

Xs(F) = / a:s(t)eJ'?“FtdtZ/ Z z(n)8(t — nTy) e 127 tgy

—0oQ

— Z w(n)/ §(t — nTy) o—d2mFt gy _ Z z(n) o—J2mFnTy
= > alw) eI =X(f),

The reconstruction filter must filter out all the spectral replicas introduced by the
sampling process, and compensate for the scaling factor F; (also introduced by the
sampling process).

In this specific case, the reconstruction filter must thus have an amplitude response of
1/Fs at F = 1kHz. and F = 3 kHz., and must filter out the frequency components with
F > F,/2 = 4;kHz. This can for example be realised by a filter having the amplitude
response sketched in Fig. 5.

The amplitude spectrum | X,.(F')| of the reconstructed signal z, (¢) when this reconstruc-
tion filter is used is shown in Fig. 6.

We now have to find an expression for the reconstructed signal z,(¢) as a function of
z(n) and the impulse response of the reconstruction filter h,(¢). This can be achieved
as follows:

zr(t) = zs(t) * he(t)

_ (Z x(n)a(t—nTs)> 0

=—00

= Y z(n)[0(t—nTy) * he(t)]

n=-—oo
o

= Y z(n)h(t — nT).

n=—oo
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Figure 5: Amplitude response of a reconstruction filter satisfying the criteria exposed in
problem 2(c).
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Figure 6: Amplitude spectrum |X,(F')| of the signal z,(¢) when the antialiasing filter from
Fig. 3 and the reconstruction filter from Fig. 5 are used.



Problem 3 [20 points]

(a)

[8 points] The decision levels {z;} and representation levels {y;} of a uniform quantiser
must fulfil the following requirements:

Tir1 — T; = A, Vi,

and
T+ Ti

Yi = 2 )
Combining these two requirements with the fact that we wish to design a uniform
quantiser with 6 quantisation intervals, the dynamic range of which must coincide with
[—1,1] (the dynamic range of the signal to be quantised), we deduce that the decision

levels are given by —1, —%, —%, 0, %, % and 1, and that the representation levels are given

5 1 1 11 5
by —§,—3:~: 52 and ¢

Vi.

[6 points] We now have to express the quantisation error variance 0'2 as a function

of {z;}, {yi} and fx(x) (defined in the problem statement). The mean value of the
quantisation error p, is assumed to be equal to zero. Therefore,

7 = Bl =E [~ Q] = [ (@ - Qla)* fx(o) ds
= Z/:Hl (z —y:)* fx(z) do

Since fx(z) is constant at each quantisation interval, the exact value for 02 can be
computed by

LA a1
a 12 12 108
Alternatively, we have that

A

= i [ (rom-5) = [

T4 B

A
udl? A3 3.1 1 1
= | = y=92.— 9. (242 42)=_—
[3]_%;&(%) 8-3 <4+2+4> 108’

RN

[2 points] Yes, this can be achieved by reducing the size of the quantisation intervals
in places where fx(z) is large, and increasing it where fx(z) is small. In this way, on
average, values of z arising often will lead to smaller quantisation errors, whereas those
which arise less frequently will lead to larger quantisation errors than the quantisation
error that would be obtained if a uniform quantiser were used. This results in a reduced

value for 03.

[8 points] We have 6 representation levels. The necessary amount of bits per sample
of the quantised signal z,(n), assuming that each codeword is associated with one
representation level and that all codewords have the same length, is thus

b= [log, 6] = 3.



Representation Level | Codeword
Yo 001
Y1 010
Y2 011
Y3 100
Y4 101
Ys 110

(With 2 bits, only 22 = 4 different levels can be represented, whereas it is possible to
represent up to 23 = 8 levels with 3 bits.) A possible code would be

[8 points] In entropy coding, symbols which arise very frequently are assigned short
codewords, where as symbols which seldom arise are assigned longer codewords. An
example of a uniquely decodable code designed according to this principle, which is
more efficient than the code from 3(d), is shown in the following table:

Representation Level | Codeword
Yo 110
U1 100
Y2 00
Y3 01
Y4 101
Y5 111

[4 points] The average codeword length L when the code from 3(e) is used is given by

L=> pi

where p; denotes the probability that representation level y; arise, and [; is the length
of the codeword assigned to representation level y;. Now, since p; = f;f“ fx(z)dz, we

have pg = ps = 15, 1 = P4 = g, and py = p3 = . Hence,
— 1 1 1 . .
L=2- 1 3+ 6 3+ Y 2 ) = 2.5 bits/representation level.

The lower limit for the average codeword length that is necessary to represent the signal
z4(n) is given by the signal entropy

1
H = Zpi log, i
7

1 1 1
= 2 (ﬁ 10g2 12+ 610g26+ ZlogZ 4)

2.46 bits/representation level.
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Problem 4 [11 points]

(a)

[4 points] We must have

1 for =0,
9("‘”“)—{0 for 1€Z\ {0},

for some T and At in order for intersymbol interference (ISI) free transmission to be
possible.

For the impulse response in Fig. 6(a) (see problem statement), we have

) :{ 0 for teZ\{2},

g 1 for t=2,

so this function meets the ISI-free transmission criterion if At =2 ms. and T' € N.

The maximum possible signalling speed % is obtained when T is as small as possible,
i.e. T =1 ms. This yields a maximum signalling speed of % = 1000 channel symbols
per second.

For the impulse response from Fig. 6(b) (see problem statement), this criterion is met
for At = 3 ms. and 7' > 2 ms. The maximum possible signalling speed is thus & =

— T
3 éls. = 500 channel symbols per second.

[2 points] In the relation

1 P
C = - logy (l—l——),
2 012\,
C is the the maximum possible number of bits per channel symbol for which trans-
mission with arbitrarily low probability of error is possible (channel capacity), and P

and 0]2\, respectively denote the average signal and noise power at the receiver of the
communication channel.

[3 points] We have shown in 4(a) that a maximum of 1000 channel symbols/second can
be sent over the channel shown in Fig. 6(a) (see problem statement) without ISI. In
order to be able to send 4000 bits/second over this channel, the channel capacity must
hence be of at least 4 bits/channel symbol. The channel noise being Gaussian, we must
have

1 P
C’:—log2 (1+—2) >4,
2 oN

where P/o?; £ SNR is the average signal to noise ratio at the receiver of the communi-
cation system. We thus conclude that we must have

SNR > 28 — 1 = 255.

[2 points] In a digital system for information transfer, channel coding is used to introduce
redundancy in the signal that is to be sent over the digital communication channel. The
redundant information helps detect and correct errors which might arise because of the
presence of channel noise. (If the information stream were sent over the communication
channel without being previously encoded, it would be impossible to detect or correct
errors arising due to channel noise.)



