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Solution to exam

Problem I

(a) The frequency response is found by taking the Fourier-transform:

H(jΩ) =
∫ ∞

0
eαte−jΩtdt =

[
1

α− jΩ
e(α−jΩ)t

]∞
0

=
1

jΩ− α

(b) The digital filter is obtained by sampling the analog filter:

hd(n) = h(nT ) = eαnT u(nT )

The frequency response of the digital filter is given by:

Hd(eω) =
∞∑

n=0

eαnT e−jωn =
∞∑

n=0

e(αT−jω)·n =
1

1− eαT−jω

We have used the formula for a geometric series, and we have also assumed that Re(α) <
0.

(c) We sketch the magnitude of the frequency response when α = −1 and T = 1/2.

Hd(eω) =
1

1− e−1/2−jω

The magnitude squared is found by:

|Hd(eω)|2 =
1

1− e−1/2−jω
· 1
1− e−1/2+jω

=
1

1 + e−1 − 2e−1/2 cos(ω)

The magnitude is therefore:

|Hd(ejω)| = 1√
1 + e−1 − 2e−1/2 cos(ω)

The magnitude of the analog filter is given by:

|H(jΩ)| = 1√
(jΩ− α) · (−jΩ− α)

=
1

Ω2 + α2

By inserting α = −1 we obtain:

|H(jΩ)| = 1
Ω2 + 1
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The graphs of the frequency responses of the digital and analog filters are given below.
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(d) We now truncate the impulse response to make it into a FIR filter. We choose the
length of the filter to be N=4. The frequency response of the truncated filter is given
by:

HFIR(ejω) =
4∑

n=0

e−1/2ne−jωn =
1− e(−1/2−jω)·5

1− e−1/2−jω

The magnitude response squared is given by:

|HFIR(ejω)|2 =
1− e(−1/2−jω)·5

1− e−1/2−jω
· 1− e(−1/2+jω)·5

1− e−1/2+jω
=

1− 2e−5/2 cos(5ω) + e−5

1− 2e−1/2 cos(ω) + e−1
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The magnitude response is given by:

|HFIR(ejω)| =
√

1− 2e−5/2 cos(5ω) + e−5√
1− 2e−1/2 cos(ω) + e−1
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By comparing the sketches of the frequency response of the IIR filter and the truncated
FIR filter we see that they are somewhat similar, but not quite the same. The truncated
filter has some ripples which is not present for the IIR filter. Note that truncating the
filter can be obtained by multiplying the IIR filter by a rectangular pulse, with the
duration of the rectangular pulse being equal to the length of the truncated filter. In
the frequency domain this operation is equivalent to folding the frequency response of
the IIR filter with a sinc function. This will result in a different frequency response of
the truncated filter compared to the IIR filter. By increasing the length of the FIR filter,
the frequency response gets more similar to the frequency response of the IIR-filter.

Problem II

(a) The unit sample response is found by applying a unit sample δ(n) on the input:

h(n) = αh(n− 1) + βδ(n)

We see that the filter is causal since it is only dependent on previous input values. We
try to find a couple of values of the unit sample response by applying the iterative
method:

h(0) = β

h(1) = αβ

h(2) = α2β

We now see that the unit sample response is given by:

h(n) = αnβu(n)

We have used the unit step function u(n) to indicate that h(n) = 0 for n < 0.
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(b) We find the frequency response by taking the Fourier transform of h(n).

H(ejω) =
∞∑

n=0

βαne−jωn = β
∞∑

n=0

(
αe−jω

)n

=
β

1− αe−jω

(c) x(n) is an autoregressive process (AR) of first order
(

AR(1)
)

. The power spectral

density SXX(ω) is found by:

SXX(ω) = |H(ejω)|2SEE(ω) =
β

1− αe−jω
· β

1− αejω
σ2

E =
σ2

Eβ2

1− 2α cos(ω) + α2

(d) The variance σ2
X can be found directly from the difference equation:

σ2
X = E{x(n)x∗(n)} = E

{(
αx(n− 1) + βe(n)

)(
α∗x∗(n− 1) + β∗e∗(n)

)}
= |α|2σ2

X + |β|2σ2
E

Since x(n− 1) cannot depend on e(n). Solving for σ2
X we get:

σ2
X =

σ2
E |β|2

1− |α|2

We have assumed the general case here that α and β might be complex.

(e) There are several ways to prove that the filter given by y(n) = ax(n) + bx(n − 1) is a
whitening filter. One procedure is to solve directly from the difference equations. We
insert the difference equation for x(n) into the difference equation for y(n):

y(n) = ax(n) + bx(n− 1) = a

(
αx(n− 1) + βe(n)

)
+ bx(n− 1)

We see that in order for the output y(n) to be equal to e(n) these two equations need
to be solved for the filter parameters:

aβ = 1
aα = −b

Which gives the solution a = 1
β and b = −α

β . We have proved that for these filter
parameters the output y(n) is equal to e(n), which is Gaussian, white noise.

(f) If we assume that y(n) is quantized and then de-quantized, then we can write the
de-quantized signal as:

yq(n) =
1
β

x(n)− α

β
x(n− 1) + q(n)

Where q(n) is the quantization noise modeled as white noise. We have used the param-
eters a = 1

β and b = −α
β which was found in (e). x(n) can be solved for:

x(n) = βyq(n) + αx(n− 1)− q(n)

From this equation we see a reasonable reconstruction scheme:

x̂(n) = βyq(n) + αx̂(n− 1)

x̂(n) is the estimated value of x(n).
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(g) We are going to choose the filter parameters such that the inputs to the quantizer have
equal variances. The output of the whitening filter is written as before:

y(n) = ax(n) + bx(n− 1)

We insert x(n) = αx(n− 1) + βe(n) into the above equation to obtain:

y(n) = aαx(n− 1) + aβe(n) + bx(n− 1)

y(n) =
(

aα + b

)
x(n− 1) + aβe(n)

Next we calculate the variance σ2
Y . Note that e(n) is zero mean, and because of this

both x(n) and y(n) are also zero mean. This means that σ2
Y = E{y(n)y∗(n)}. We

further assume that all the signals are real signals, and therefore the variance is given
by σ2

Y = E{y(n)y(n)} :

σ2
Y = E

{(
(aα + b)x(n− 1) + aβe(n)

)(
(aα + b)x(n− 1) + aβe(n)

)}
=

(
aα + b

)2

σ2
X + α2β2σ2

E

In order for the filter to be a whitening filter, y(n) should only consist of a scaled

version of the white noise term e(n). From y(n) =
(

aα + b

)
x(n − 1) + aβe(n) we get

the equation:

aα + b = 0

Which means that b = −aα. We have the additional condition that y(n) should have
the same variance as x(n), σ2

Y = σ2
X . From (d) we have that σ2

X = σ2
Eβ2/(1−α2). This

gives us the equation:

σ2
Eβ2

1− α2
= a2β2σ2

E

Solving for the filter parameters we get a = 1√
1−α2

and by using b = −aα we also get
b = − α√

1−α2
We now want to compare the quantization noise when quantizing x(n)

directly to the case when we quantize y(n). The variance of the signals on the input
to the quantizers are the same, and the signals have the same pdf. The only difference
is that x(n) is a correlated signal, while y(n) is uncorrelated/white. The quantization
noise variance on the output of the de-quantizer can be denoted by σ2

q and it is same for
both cases. But when we are using a whitening filter we have to use a reconstruction
filter at the receiver. Which means that the quantization noise passes through this filter.
We have to find this reconstruction filter first. Using the filter parameters we just found
we express y(n) as:

y(n) =
x(n)√
1− α2

− α√
1− α2

x(n− 1)
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Which suggests that we reconstruct the signal by:

x̂(n) =
√

1− α2yq(n) + αx̂(n− 1)

To find the quantization noise on the output of this filter which we denote by z(n) we
assume that only the quantization noise is applied at the input of the filter. We then
get this difference equation for the noise:

z(n) =
√

1− α2q(n) + αẑ(n− 1)

We now find the variance of this noise:

σ2
Z = E{z(n)z(n)} = E

{(√
1− α2q(n) + αẑ(n− 1)

)
·
(√

1− α2q(n) + αẑ(n− 1)
)}

=
(

1− α2

)
σ2

q + α2σ2
Z

With the result that σ2
Z = σ2

q . This means that the noise variance when quantizing x(n)
directly gives the same same quantization noise variance as when quantizing the white
signal y(n).

(h) Even though the quantization noise variance is the same for both cases, this does not
mean that the noise spectra are the same. When quantizing x(n) directly the quanti-
zation noise is white and the spectrum is given by:

Sqq(ω) = σ2
q

To find the noise spectrum for the other case we first take the Fourier transform of z(n):

F{z(n)} = F

{√
1− α2q(n) + αẑ(n− 1)

}
=

√
1− α2Q(ejω) + αZ(ejω)e−jω

Z(ejω) =
√

1− α2

1− αe−jω
Q(ejω)

We have used the difference equation for z(n) which we found in (g). From this we find
the spectral density:

SZZ(ω) = E

{
Z(ejω)Z∗(ejω)

}
=

(1− α2)σ2
q(

1− αe−jω

)(
1− αejω

) =
(1− α2)σ2

q

1− 2α cos(ω) + α2

We see that SZZ(ω) has the exact same spectral shape as SXX(ω). While the quanti-
zation noise when quantizing x(n) directly is white.

Problem III

(a) A probability density function (pdf) fX(x) has to satisfy
∫∞
−∞ fX(x)dx = 1. If the pdf is

symmetric around x = 0 then we need only to integrate half of the interval and multiply
by 2, i.e 2

∫∞
0 fX(x)dx = 1. This is the case for our pdf :

2
∫ ∞

0
fX(x)dx = 2

∫ ∞

0
Ae−αxdx = 2A

[
− 1

α
e−αx

]∞
0

= 2A/α
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Since the integral of the pdf from x = −∞ to ∞ should be equal to 1, we get the
equation:

2A/α = 1

Which leads to A = α/2. We also know that the variance of x should be equal to 1.
Since the pdf is symmetric around x = 0 we know that the mean is zero, i.e µX = 0.
This simplifies the calculation of the variance:

σ2
X =

∫ ∞

−∞
(x− µX)2fX(x)dx = 2

∫ ∞

0
x2fX(x)dx = 2α/2 ·

∫ ∞

0
x2e−αxdx = α

2!
α3

=
2
α2

Because of the condition σ2
X = 1, we get α =

√
2.

(b) The quantization noise for an uniform quantizer with stepsize ∆ << 1 is given by:

σ2
q = ∆2/12

This formula applies for uniform quantization independent of which pdf the signal fol-
lows.

(c) The probability of the signal lying inside the interval [(k − 1)∆, k∆] is given by:

Pk =
∫ k∆

(k−1)∆
fX(x)dx =

∫ k∆

(k−1)∆

1√
2
e−

√
2xdx =

1√
2

[
− 1√

2
e−

√
2x

]k∆

(k−1)∆

=
1
2
e−

√
2k∆

(
e
√

2∆ − 1
)

Note that we have found the probability for signals lying in positive intervals, but
Pk = P−k. This is because the pdf is symmetric around x = 0. Now we are going to use
these probabilities to find the smallest rate R for the quantized source. The smallest
rate is given by the entropy. The entropy is found according to this formula:

H = −
∞∑

k=−∞
Pk log2(Pk) = −2 ·

∞∑
k=1

Pk log2(Pk)

= −2 ·
∞∑

k=1

1/2e−
√

2k∆(e
√

2∆ − 1) log2

(
1/2e−

√
2k∆(e

√
2∆ − 1)

)

= −2 ·
∞∑

k=1

1/2e−
√

2k∆(e
√

2∆ − 1) ·
(

log2(1/2) + log2(e
√

2∆ − 1) + log2(e
−
√

2k∆)
)

Now we realize that
∑∞

k=−∞ Pk · C = C, where C is assumed to be a constant. And
therefore:

−2 ·
∞∑

k=1

1/2e−
√

2k∆(e
√

2∆ − 1) ·
(

log2(1/2) + log2(e
√

2∆ − 1)
)

= − log2(1/2)− log2(e
√

2∆ − 1)
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This is used to simplify some of the terms of the entropy expression:

H = − log2(1/2)− log2(e
√

2∆ − 1)− 2 ·
∞∑

k=1

1/2e−
√

2k∆(e
√

2∆ − 1) · log2(e
−
√

2k∆)

= 1− log2(e
√

2∆ − 1)−
∞∑

k=1

e−
√

2k∆(e
√

2∆ − 1) · −
√

2k∆ log2(e)

= 1− log2(e
√

2∆ − 1) +
√

2∆ log2(e)(e
√

2∆ − 1)
e−

√
2∆

(1− e−
√

2∆)2

= 1− log2(e
√

2∆ − 1) +
√

2∆ log2(e)e
√

2∆(1− e−
√

2∆)
e−

√
2∆

(1− e−
√

2∆)2

= 1− log2(e
√

2∆ − 1) +
√

2∆ log2(e)

1− e−
√

2∆

(d) Now we consider that we represent the source samples by a rate R = H. The source
has a bandwidth W which means that we sample the source 2W times per second. The
source therefore produces 2WR bits per second. The channel capacity when we occupy
a frequency bandwidth of B Hz is given by C = B log2(1 + SNR). By setting the
expression for the number of bits the source produces, equal to the channel capacity,
we are able to find the minimum SNR to achieve error free transmission:

2WR = B log2(1 + SNR)
2WR

B
= log2(1 + SNR)

SNR = 22WR/B − 1

SNR = 24R − 1

In the last step we have inserted W = 4 khz and B = 2 khz.
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