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Problem 1

(a) The relation between the output signal y(n) and the input signal x(n) expressed by the
impulse response h(n) is given by the convolution:

y(n) =
∞∑

k=−∞
h(k)x(n− k)

=
∞∑

k=−∞
h(n− k)x(k)

= h(n) ∗ x(n) = x(n) ∗ h(n).

(b) The output signal from a LSI filter with unit sample response h(n) where the input
signal is x(n) = ejwn:

y(n) =
∞∑

k=−∞
h(k)x(n− k) =

∞∑
k=−∞

h(k)ejw(n−k)

= ejwn
∞∑

k=−∞
h(k)e−jwk = x(n)

∞∑
k=−∞

h(k)e−jwk

= x(n)H(ejw).

The last equality, however, is only valid when x(n) = ejwn.

The relation between the unit sample response and the frequency response is thus given
by

H(ejw) =
∞∑

k=−∞
h(k)e−jwk.

(c) The input-output relation of the system is given by:

y(n) = α(x(n) ∗ h(n)) + (v(n) ∗ g(n))β
= α(x(n) ∗ h(n)) + (h(n) ∗ x(n) ∗ g(n))β
= (α+ g(n)β) ∗ h(n) ∗ x(n).

As we can see from the result in a), the unit sample response of the total system is

htot(n) = (α+ g(n)β) ∗ h(n).
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(d) The frequency response of the total system with impulse response htot(n) is given by

Htot(ejω) = F {htot(n)} = F {(α+ g(n)β)} · F {h(n)}
= (α+ βG(ejw))H(ejw).

(e) The frequency response of the two LSI filters can be found by taking the Fourier trans-
forms of the two impulse responses respectively.

H(ejw) = F {a0δ(n) + a1δ(n− 1)} = a0 + a1e
−jw,

G(ejw) = F {γnu(n)} =
∞∑
n=0

γne−jwn =
1

1− γe−jw
.

The total frequency response is now given by:

Htot(ejω) = (α+ βG(ejw))H(ejw) = (α+
β

1− γe−jw
)(a0 + a1e

−jw).

BIBO-stability (Bounded-Input-Bounded Output) means that a bounded input results
in a bounded output. BIBO-stability is guaranteed if the sum of the magnitude of the
impulse response is bounded:

∑∞
n=0 |htot(n)| <∞.

h(n) fulfills the BIBO-stability criterion if γ < 1. If this is the case, the series converge
for all w.

Problem 2

(a) The Discrete Time Fourier Transform (DTFT):

X(ejw) =
∞∑

n=−∞
x(n)e−jwn.

The DTFT applies for all w and can transform infinite discrete-time signals.

The Discrete Fourier Transform (DFT):

X(k) =
N−1∑
n=0

x(n)e−j
2π
N
kn.

The DFT can thus transform a finite length discrete time signal. The result is a sequence
of the same length as the input signal. If an infinite length signal has non-zero values
in n ∈ [0, N − 1], then

X(ejw) = X(k).

In other words, DFT gives exact values of the DTFT in the points w = 2π
N k.
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(b) The inverse DFT is expressed by

x(n) =
1
N

N−1∑
k=0

X(k)ej
2π
N
kn.

To prove this we insert the expression for X(k):

1
N

N−1∑
k=0

N−1∑
l=0

x(l)e−j
2π
N
klej

2π
N
kn =

1
N

N−1∑
k=0

N−1∑
l=0

x(l)e−j
2π
N
k(n−l)

We observe that the sum

1
N

N−1∑
k=0

e−j
2π
N
k(l−n) = δ(l − n) =

{
1 for l = n
0 otherwise,

that is, it only has a non-zero value when l = n, because e−j2πn = 1 when n is an
integer.
The expression for the IDFT now becomes

N−1∑
l=0

x(l)δ(l − n) = x(n). q.e.d

(c) The DTF of x(n) is given by

X(k) =
N−1∑
n=0

x(n)e−j
2π
N
kn =

N−1∑
n=0

ejω0ne−j
2π
N
kn =

N−1∑
n=0

ej(ω0− 2π
N
k)n.

If ω0 = 2π
N l then

X(k) =
N−1∑
n=0

ej
2π
N

(l−k)n =
1− ej2π(l−k)

1− ej
2π
N

(l−k)
.

In the case of l = n we can see that both the numerator and the denominator are equal
to zero. However, if we inspect the sum directly, we observe the fact that

X(k) =
N−1∑
n=0

1 = N.

Other values of k will only make the numerator equal to zero, not the denominator.
The DFT of x(n) is therefore,

X(k) =
{
N for k=l
0 otherwise.

We can easily see that other values of ω0 will not satisfy the condition of the numerator
being equal to zero.
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(d) To prove the relation

X(k) = X∗(N − k),

we use the DFT transform

X(N − k) =
N−1∑
n=0

x(n)e−j
2π
N

(N−k)n

=
N−1∑
n=0

x(n)ej
2π
N
kn,

since e−j2πn = 1 for all n (integer). Since x(n) is real, the complex conjugate of the
DFT becomes

X∗(N − k) =
N−1∑
n=0

x(n)e−j
2π
N
kn = X(k) q.e.d

Solving the above equation for k = 0 and k = N
2 , we see that both X(0) and X(N/2)

are real.

(e) To be able to exactly represent a discrete signal with finite length N by series expansion,
the N basis functions have to be linearly independent of each other. This means that
any one basis function cannot be expressed by a linear combination of the other basis
functions.

Signals of infinite length have to be represented by a infinite number of basis functions.
However, it is important to notice that an infinite number of terms does not necessarily
imply uniform convergence.

Problem 3

(a) The quantization noise can be approximated by

σ2
Q =

∆2

12
,

where ∆ is the quantization interval. This approximation is exact if the pdf is constant
or any linear function over each quantization interval. In this case it is constant over
each interval, which implies that the exact value of the quantization noise is

σ2
Q =

(1
8)2

12
=

1
768

.

(b) The power of the reconstructed signal is given by

P =
8∑
i=1

x2
i pi.
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The probabilities are

p1 = p8 =
1
4
,

p2 = p7 =
1
8
,

p3 = p4 = p5 = p6 =
1
16
.

Then the power can be found as

P = 2

[(
7
16

)2 2
8

+
(

5
16

)2 1
8

+
(

3
16

)2 1
16

+
(

1
16

)2 1
16

]
=

1
8
.

(c) The lowest possible average bit rate is given by the entropy

H = −
8∑
i=1

pi log2 pi = −2
(

1
4

log2

1
4

+
1
8

log2

1
8

+ 2
1
16

log2

1
16

)
= 2

(
2
4

+
3
8

+
4
8

)
=

22
8

bits/symbol.

(d) The necessary channel signal-to-noise ratio to assure error-free transmission can be
found by solving for the CSNR from the channel capacity equation and setting the
channel capacity equal to the entropy:

C = H =
1
2

log2(1 + CSNR) → CSNR = 22H − 1 = 2
22
4 − 1 = 44.25.

(e) The lowest possible symbol energy occurs when we transmit the most probable symbols
on the channel symbols with the smallest amplitude. Average symbol energy per sample
then becomes:

P = 2

[(
1
16

)2 1
4

+
(

3
16

)2 1
8

+
(

5
16

)2 1
16

+
(

7
16

)2 1
16

]
=

3
64

= 0, 0469.
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