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Problem 1

(a) The input and the input-output relation can be defined by

x(n) =
N∑
i=1

aixi(n)

yi(n) = H[xi(n)]

• Linearity:

y(n) = H[x(n)] = H

[ N∑
i=1

aixi(n)
]

=
N∑
i=1

aiH[xi(n)] =
N∑
i=1

aiyi(n)

• Stability:

|x(n)| ≤ ∞ n = −∞,∞ =⇒
|y(n)| ≤ ∞ n = −∞,∞

• Causality: y(n) independent of x(n+m), m > 0.

• Time invariance:

y(n) = H[x(n)] =⇒ y(n− k) = H[x(n− k)], n, k = −∞,∞

(b) A Linear time-invariant filter is called a Linar Time Invariant (LTI)
filter. As consequence of the linearity and the time-invariance properties
of the system, the response of the system to an arbitary input signal can
be expressed in terms of the unit sample response.

The effect of the causality property on the unit sample response can be
defined by

h(n) = 0 for n<0

Region of convergence:

ROC: |H(z)| <∞⇔ |z| > |α| where |α| < 1⇒ z = ejw ∈ ROC
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(c) The unit sample response h1(n) and h2(n) can be found from the
difference equations by setting y(n) = h(n) and x(n) = δ(n)

h1(n) = b0δ(n) + b1δ(n− 1) + b2δ(n− 2)

Finding h1(n) for different values of n, gives us the unit sample response

h1(0) = b0

h1(1) = b1

h1(2) = b2

h1(n) = 0 for n<0 and n>2

Similary we find h2(n)

h2(n) = ah2(n− 1) + b0δ(n)

Inserting for different values of n gives us the unit sample response

h2(0) = b0

h2(1) = ab0

h2(2) = a2b0
...

h2(n) = anb0 n ≥ 0

The transfer functions H1(z) and H2(z) can be found by taking the Z
transform of the unit sample responses.

H1(z) =
∞∑

n=−∞
h(n)z−n

= b0 + b1z
−1 + b2z

−2

H2(z) =
∞∑

n=−∞
h(n)z−n

=
∞∑
n=0

anb0z
−n

=
b0

1− az−1

ROC H1(z): Intire z-plane (except z=0)
ROC H2(z): |z| > a⇒ |a| < 1

(d) The autocorrelation of a finite signal can be found by solving the
equation

rhh(m) =
N−|m|−1∑
n=0

h(n)h(n+m)
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where N is the signal length.

rh1h1(0) =
2∑

n=0

h2
1(n) = b20 + b21 + b22

rh1h1(1) =
1∑

n=0

h1(n)h1(n+ 1) = b0b1 + b1b2

rh1h1(2) =
0∑

n=0

h1(n)h1(n+ 2) = b0b2

rh1h1(m) = 0 m > 2

The autocorrelation of an infinite signal can be found by solving the
equation

rhh(m) =
∞∑
n=0

h(n)h(n+m)

rh2h2(m) =
∞∑
n=0

h2(n)h2(n+m)

=
∞∑
n=0

b0a
nb0a

n+m

=
b20

1− a2
am m ≥ 0

Problem 2

(a) We find the transferfunction of the digital filter by inserting
s =

(
1−z−1

1+z−1

)
into the formula for the transfer function of the analog

filter. We start with the first term:

Ha1(s) =
s+ 1
s+ 1

3

⇒

(
1−z−1

1+z−1

)
+ 1(

1−z−1

1+z−1

)
+ 1

3

=
1− z−1 + 1 + z−1

1− z−1 + 1
3 (1 + z−1)

=
2

4
3 −

2
3z
−1

=
3
2

1
1− 1

2z
−1
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Which is the same as 3
2H1(z). Similarly for the second term:

3
4
Ha2(s) =

3
4
s+ 1
s+ 1

2

⇒ 3
4

(
1−z−1

1+z−1

)
+ 1(

1−z−1

1+z−1

)
+ 1

2

=
3
4

1− z−1 + 1 + z−1

1− z−1 + 1
2 (1 + z−1)

=
6

6− 2z−1

=
1

1− 1
3z
−1

Since this is equal to H2(z), we have proven that the transfer function of
the digital filter is H(z) = 3

2
1

1− 1
2
z−1 − 1

1− 1
3
z−1 . Further, we find the

impulse response by finding the inverse Z-transform of the transfer
function. By using the relation Z{anu(n)} = 1

1−az−1 |a| < 1, we get:

h(n) =
3
2

(
1
2

)n
−
(

1
3

)n
(b) By combining the two terms into one term, we get:

H(z) =
3
2

1
1− 1

2z
−1
− 1

1− 1
3z
−1

=
3
2 −

1
2z
−1 −

(
1− 1

2z
−1
)(

1− 1
2z
−1
) (

1− 1
3z
−1
)

=
1
2

1(
1− 1

2z
−1
) (

1− 1
3z
−1
)

Which is the wanted expression.

(c) Since we can rewrite H(z) as

H(z) =
1/2

1− 5
6z
−1 + 1

6z
−2
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we get the DF2 structure:

x(n) I
1/2 // /.-,()*++ //

��

y(n)

z−1

��

VV................
J

5/6

z−1

OO

J
−1/6

By using H(z) = 1
2

1

(1− 1
2
z−1)(1− 1

3
z−1) the filter is represented by a

cascade structure:

x(n) I
1/2 // /.-,()*++ //

��

/.-,()*++ //

��

y(n)

z−1 z−1

OO

J
1/2

OO

J
1/3

Finally, by using H(z) = 3
2

1
1− 1

2
z−1 − 1

1− 1
3
z−1 we get the filter represented

by a parallell structure:

I
3/2 // /.-,()*++

��

��

z−1

OO

J
1/2oo

x(n) // /.-,()*++ //

��

/.-,()*+− // y(n)

z−1

OO

J
1/3
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(d) The autocorrelation function of h1(n) may be found by convolution:

h1(n) =
(

1
2

)n
u(n)

rh1h1(m) = h1(m) ∗ h1(−m)

=
∞∑
n=0

(
1
2

)n(1
2

)n+m

m ≥ 0

=
(

1
2

)m ∞∑
n=0

(
1
4

)n
=
(

1
2

)m 1
1− 1

4

=
4
3

(
1
2

)m
The same procedure for h2(n) gives:

h2(n) =
(

1
3

)n
u(n)

rh2h2(m) = h2(m) ∗ h2(−m)

=
(

1
3

)m 1
1− 1

9

m ≥ 0

=
9
8

(
1
3

)m
Finally, using convolution on h(n), gives:

rhh(m) =
(

3
2
h1(m)− h2(m)

)
∗
(

3
2
h1(−m)− h2(−m)

)
=

9
4
rh1h1(m) + rh2h2(m)− 3

2
h1(m) ∗ h2(−m)− 3

2
h2(m) ∗ h1(−m)

=
9
4
rh1h1(m) + rh2h2(m)− 3

2

∞∑
n=0

(
1
2

)n+m(1
3

)n
− 3

2

∞∑
n=0

(
1
3

)n+m(1
2

)n
m ≥ 0

= 3
(

1
2

)m
+

9
8

(
1
3

)m
−
(

3
2

)(
6
5

)(
1
2

)m
−
(

3
2

)(
6
5

)(
1
3

)m
=

6
5

(
1
2

)m
− 27

40

(
1
3

)m

Problem 3

(a) The round-off error e(n) is modeled as a uniform distributed random
variable in the range (−∆

2 ,
∆
2 ) where ∆ = 2−B. The probability density
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function is therefore,

pe(x) =


1
∆ |x| ≤ ∆

2

0 |x| > ∆
2

The noise power σ2
e is given by the variance of pe(x).

σ2
e =

∫ ∞
−∞

x2pe(x)dx =
∫ ∆

2

−∆
2

x2 1
∆
dx =

[
1

3∆
x3

]∆
2

−∆
2

=
∆2

12
=

2−2B

12

(b) First we need to find an expression for the noise at the output q(n).

q(n) = e(n) ∗ gk(n) =
∞∑

l=−∞
gk(l)e(n− l)

We then use this expression to find the noise power at the filter output.

σ2
qk = E[q2(n)] = E

[ ∞∑
l=−∞

gk(l)e(n− l)
∞∑

m=−∞
gk(m)e(n−m)

]
=

∞∑
l=−∞

∞∑
m=−∞

gk(l)gk(m)E[e(n− l)e(n−m)]

=
∞∑

l=−∞
g2
k(l)E[e2(n− k)]

= σ2
e

∞∑
l=−∞

g2
k(l)

= σ2
ergkgk

(0)

The third step is possible due to the fact that e(n) is white uncorrelated
noise which makes E[e(n− l)e(n−m)] = 0 for l 6= m.

(c) • By observing the DF2 filter structure from problem 2, we see that
all three multiplications ”see” the same filter after the first
multiplication to the output. Therefore the unit sample response is
given by gk(n) = 2h(n) for k=1,2,3. First we find the rounding
noise contribution q(n)

q(n) = 3(2h(n) ∗ e(n))

To find the rounding error σ2
q we use the equation given in the

previous problem.

σ2
q = 3(4σ2

erhh(0)) = 12[
6
5
− 27

40
]σ2
e =

63
10
σ2
e ≈ 6.3σ2

e
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• The cascaded filter structure has three multiplications and two of
them ”sees” the filter after the first multiplication to the output,
2h(n), while the third one ”sees” h2(n). The unit sample respose is
therefore gk(n) = 2h(n) for k=1,2 and g3(n) = h2(n). The rounding
error then becomes

q(n) = 2(2h(n) ∗ e(n)) + h2(n) ∗ e(n)

σ2
q = 4(2σ2

erhh(0)) + σ2
erh2h2(0) = [8

21
40

+
9
8

]σ2
e =

213
40

σ2
e ≈ 5, 3σ2

e

• The parallel filter structure also contains three multiplications
where two of them ”see” h1(n) and the last one ”sees” h2(n). The
unit sample respose is therefore gk(n) = h1(n), for k=1,2
g3(n) = h2(n).The rounding error is given by

q(n) = 2(h1(n) ∗ e(n)) + h2(n) ∗ e(n)

σ2
q = 2σ2

erh1h1(0) + σ2
erh2h2(0) = [

18
8

+
4
3

]σ2
e =

430
120

σ2
e ≈ 3, 6σ2

e

As we can see from these calculations, the parallel filter structure
introduces the least noise into the system, while the DF2 filter structure
introduces almost twice as much noise into the system as the parallel
structure.

(d) Overflow can happen after an addition if the sum is not in the dynamic
range. To prevent overflow in the summation nodes we introduce an
upper bound Ax on x(n).

|yk(n)| =
∣∣∣ ∞∑
m=−∞

hk(m)x(n−m)
∣∣∣ ≤ Ax ∞∑

m=−∞
|hk(m)|

Since the dynamic range is limited to (-1,1), Ax can be found by

Ax <
1∑∞

m=−∞ |hk(m)|

• In the DF2 structure we have 1 summation node which ”sees” the
entire filter h(n).

∞∑
m=0

|h(m)| =
∞∑
m=0

∣∣∣3
2

(
1
2

)n
−
(

1
3

)n ∣∣∣ = 3− 3
2

=
3
2

Ax =
2
3

• In the cascaded structure we have two summation nodes where the
first node ”sees” 1

2h1(n) and the second node ”sees” the entire filter
h(n).

∞∑
m=0

1
2
|h1(m)| = 1

2

∞∑
m=0

(
1
2

)n
= 1
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Ax1 = 1

Ax =
2
3

Since Ax < Ax1 we use Ax to scale the filter structure.
• The parallel structure has three summation nodes where the middle

node ”sees” h(n), the top node ”sees” 3
2h1(n) and the button node

”sees” h2(n).
∞∑
m=0

|h2(m)| =
∞∑
m=0

(
1
3

)n
=

3
2

3
2

∞∑
m=0

|h1(m)| = 3

Ax =
2
3

Ax1 =
1
3

Ax2 =
2
3

Since Ax1 < Ax ≤ Ax2 we use Ax1 to scale the filter structure.

Problem 4

(a) We have the following situation:

ω(n) // H(z) // y(n)

The output of H(z) is then a random process with autocorrelation
function given by

γyy(m) = σ2
ωrhh(m)

where rhh(m) is the same as in problem 2.

The output y(n) of the filter is approximated with, ŷ(n) = −ay(n− 1).
By applying the normal equations for this situation, we get:

aγyy(0) = −γyy(1)⇒

a = −γyy(1)
γyy(0)

= −σ
2
ωrhh(1)
σ2
ωrhh(0)

= −
(

6
5

) (
1
2

)
−
(

27
40

) (
1
3

)
6
5 −

27
40

= −15/40
21/40

= −5
7
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Further, the error power is given by:

σ2
f = γyy(0) + aγyy(1)

= σ2
ω

21
40
− σ2

ω

5
7

15
40

= σ2
ω

9
35

(b) We have the following situation:

ω(n)
σ2

ω // 1/2

(1− 1
2
z−1)(1− 1

3
z−1)

// y(n)

Where y(n) is to be modelled by a linear prediction filter:

ω(n)
σ2

f // 1
(1+a1z−1+a2z−2+···−aP z−P )

// y(n)

Since H(z) is a second order allpole filter, y(n) is an AR[2] process. Thus
we know that the best linear prediction filter is of order 2. This is
because the parameters of the AR[2] process is related to the
autocorrelation sequence by the Yule-Walker equations:γyy(0) γyy(−1) γyy(−2)

γyy(1) γyy(0) γyy(−1)
γyy(2) γyy(1) γyy(0)

 1
a1

a2

 =

1
4σ

2
ω

0
0


where the noise power had to be scaled by b20 = 1

4 since the prediction
filter has b0 = 1. The corresponding relation for the linear predictor of
order two is given by the normal equations:γyy(0) γyy(−1) γyy(−2)

γyy(1) γyy(0) γyy(−1)
γyy(2) γyy(1) γyy(0)

 1
a2(1)
a2(2)

 =

σ2
f

0
0


Hence, we see that the coefficients, ai, is the same as for the AR[2]
process, and the error variance is equal to the noise variance divided by
4 (σ2

f = σ2
ω
4 ).

(c) Wiener filter is applied in cases where we are given a signal x(n) which
consists of the sum of a signal s(n) and noise q(n). The objective of the
filter is to suppress the undesired interference and recover as much of the
signal as possible. The output of the filter is an approximation of the
desired signal sequence d(n) = s(n+D) where D ∈ Z. The Wiener filter
is designed to minimize the power of the error sequence e(n).

s(n) // /.-,()*++
x(n) // Wiener filter

hω(n)
z(n) // /.-,()*+− // e(n)

ω(n)

OO

d(n)

OO
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(d) The Wiener filter is used as a noise reduction tool by setting the
d(n) = s(n).

There are three different SNR cases worth mentioning:

Low SNR (Γss(f)� σ2
ω) The equation will be dominated by σ2

ω and
therefore H(f) will be close to zero.

Intermediate SNR Neither of the components will dominate, so both
of them will contribute to H(f).

High SNR (Γss(f)� σ2
ω) The noise power may be neglected in the

equation, hence H(f) will be close to one.
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