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Problem 1

(a)
2y[n]− y[n− 1] = x[n]

⇒ 2y[n] = x[n] + y[n− 1]

⇒ y[n] =
1

2
x[n] +

1

2
y[n− 1]

The block diagram that describe the system is shown in Figure 1.

x[n] y[n]
1/2

1/2

+

D

Figure 1: Block diagram of the system

(b) The frequency response is found as follows:

2y[n]− y[n− 1] = x[n]

DTFT{2y[n]− y[n− 1]} = DTFT{x[n]}
⇒ 2Y (ω̂)− Y (ω̂)e−jω̂ = X(ω̂)

⇒ Y (ω̂)(2− e−jω̂) = X(ω̂)

⇒ H(ω̂) =
Y (ω̂)

X(ω̂)
=

1

2− e−jω̂
(1)

To find the filter type, we must find |H(ω̂)|.

|H(ω̂)| =
1

|2− e−jω̂|

=
1

|2− cos ω̂ + j sin ω̂|

=
1

√

(2− cos ω̂)2 + sin2 ω̂

=
1√

5− 4 cos ω̂
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Now
ω̂ = 0 ⇒ |H(ω̂)| = 1

and
ω̂ = π ⇒ |H(ω̂)| = 1/3

|H(ω̂)| is monotonically decreasing function for ω̂ ∈ [0, π]. Therefore, H(ω̂) is a low
pass filter.

(c) We know that

H(ω̂) = DTFT {h[n]} =
∞
∑

n=−∞

h[n]e−jω̂n (2)

The H(ω̂) in (1) can be written as

H(ω̂) =
1

2− e−jω̂
=

1

2

1

1− 1

2
e−jω̂

=
1

2

∞
∑

n=0

(
1

2
e−jω̂)n =

∞
∑

n=0

1

2n+1
e−jω̂n (3)

From (2) and (3),

h[n] =

{

0, n < 0
1

2n+1 , n ≥ 0
=

1

2n+1
u[n] (4)

Alternative solution:

y[n] =
1

2
x[n] +

1

2
y[n− 1] ⇒ h[n] =

1

2
δ[n] +

1

2
h[n− 1]

Since it is a causal system, h[n] = 0, n < 0. We have

h[0] =
1

2
δ[0] +

1

2
h[−1] =

1

2

h[1] =
1

2
δ[1] +

1

2
h[0] =

1

4
=

1

22

h[2] =
1

2
δ[2] +

1

2
h[1] =

1

8
=

1

23

⇒ h[n] =
1

2n+1
, n ≥ 0

This is an IIR filter because h[n] is infinitely long.

(d) The input signal is

x[n] = 5 + 2 cos(
π

3
n).

Note that x[n] consists of a DC-component (ω̂ = 0) and a cosine-component with
ω̂ = π

3
. The output signal will also contain these two frequency components only. The

frequency response of the system determines the amplification/attenuation and phase
shift of these two components.

We have found in 1b) that |H(ω̂)| = 1√
5−4 cos ω̂

.

⇒ |H(0)| = 1 and |H(π
3
)| = 1√

3
.

Phase shift of the system is given as ∡H(ω̂) = −∡(2− e−jω̂).

2− e−jω̂ = 2− (cos ω̂ − j sin ω̂) = (2− cos ω̂) + j sin ω̂

⇒ ∡H(ω̂) = − arctan
sin ω̂

2− cos ω̂
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⇒ ∡H(0) = − arctan(0) = 0 and ∡H(π
3
) = − arctan

√

3

2

2− 1

2

= − arctan( 1√
3
) = −π

6
.

The output signal is therefore given as

y[n] = 5 +
2√
3
cos(

π

3
n− π

6
).

(e) The spectrum of the input signal is

X(ω̂) =
1

1 + 1

2
e−jω̂

.

The spectrum of the output signal is given as

Y (ω̂) = X(ω̂) ·H(ω̂) =
1

1 + 1

2
e−jω̂

· 1

2− e−jω̂
=

1

2− 1

2
e−j2ω̂

=
1

2

1

1− 1

4
e−j2ω̂

=
1

2

∞
∑

n=0

(
1

4
e−j2ω̂)n =

∞
∑

k=0

1

22k+1
e−jω̂2k (5)

The general form for Y (ω̂) is given as

Y (ω̂) = DTFT {y[n]} =
∞
∑

n=−∞

y[n]e−jω̂n (6)

(5) and (6) ⇒

y[n] =

{

1

22k+1 , n = 2k, k ≥ 0

0, otherwise
=

{

1

2n+1 , n ≥ 0 and n even
0, otherwise

(7)

Problem 2

(a) The signal x(t) is a periodic with period T0 = 2s, and x(t) = t for t ∈ [−1, 1]. The
coefficients ck of the Fourier series are given as.

ck =
1

T0

∫

T0

x(t)e
−j 2πk

T0
t
dt =

1

2

∫

1

−1

x(t)e−jπktdt =
1

2

∫

1

−1

te−jπktdt

For k = 0,

c0 =
1

2

∫

1

−1

tdt =
t2

4
|1−1 = 0

and for k 6= 0,

ck =
1

2

∫

1

−1

te−jπktdt

=
1

2

[

− t

jπk
e−jπkt|1−1 +

1

jπk

∫

1

−1

e−jπktdt

]

=
1

2

[

− 1

jπk
e−jπk +

−1

jπk
ejπk − 1

(jπk)2
e−jπkt|1−1

]

=
1

2

[

− 1

jπk
(ejπk + e−jπk) +

1

(πk)2
(e−jπk − ejπk)

]

=
1

2

[

− 2

jπk
cos(πk)− 2j

(πk)2
sin(πk)

]

=
j

πk
(−1)k
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(b) The sampling frequency is fs = 2.5Hz.

⇒ ωs = 2πfs = 5π
rad

s

To avoid aliasing we must limit the spectrum of x(t) to [−ωs

2
, ωs

2
] = [−2.5π, 2.5π]. This

can be achieved with an ideal low pass filter with cutoff frequency ωc = 2.5π. The
magnitude response of the filter is shown in Figure 2.
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Figure 2: Magnitude response of the filter

(c) Signal x(t) has frequency components in wk = 2πk
T0

= πk. After filtering, all
components for |k| > 2 will be removed. Spectrum of x′(t) is given by

c′k =

{

ck, |k| ≤ 2
0, otherwise

(8)

The magnitude spectrum of the signal x′(t) is shown in the Figure 3.
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Figure 3: Magnitude spectrum of the signal x′(t)

(d) The spectrum of xs[n] is a periodic extension of the spectrum of x′(t) with period
2πfs = 5π. The magnitude spectrum is shown in the Figure 4.

Problem 3

(a) Here xmin = −1, xmax = 1 and L = 6.

∆ =
xmax − xmin

L
=

1− (−1)

6
=

1

3

The decision levels {di} and representation levels {ri} of the uniform quantiser are
given as

di : −1,−2

3
,−1

3
, 0,

1

3
,
2

3
, 1

4
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Figure 4: Magnitude spectrum of the sampled signal xs[n]

ri : −
5

6
,−1

2
,−1

6
,
1

6
,
1

2
,
5

6

(b) Quantization noise: q = x− xq

Quantization noise Power:

Pq = E[q2] = E[(x− xq)
2] =

∫ ∞

−∞
(x− xq)

2fX(x)dx

=
6

∑

i=1

∫ di

di−1

(x− ri)
2fX(x)dx

Since fX(x) is constant at each quantization interval, the approximate formula will
give the exact value of Pq.

Pq =
∆2

12
=

1/9

12
=

1

108

Alternative solution: Due to the symmetry of fX(x), we have

Pq = 2

6
∑

i=4

∫ di

di−1

(x− ri)
2fX(x)dx

= 2

∫

1/3

0

(x− 1

6
)2 · 1

4
dx+ 2

∫

2/3

1/3
(x− 1

2
)2 · 1

2
dx+ 2

∫

1

2/3
(x− 5

6
)2 · 3

4
dx

=
1

2

∫

1/6

−1/6
y2dy +

∫

1/6

−1/6
y2dy +

3

2

∫

1/6

−1/6
y2dy

= 3 · 2
∫

1/6

0

y2dy

= 6 · y
3

3
|1/6
0

=
2

63
=

1

108

To compute the signal-to-quantization noise ratio (SQNR), we first need to calculate

5



Px.

Px = E[x2] =

∫ ∞

−∞
x2fX(x)dx

= 2

∫ 1

3

0

3

4
x2dx+ 2

∫ 2

3

1

3

1

2
x2dx+ 2

∫

1

2

3

1

4
x2dx

=
1

2
x3|

1

3

0
+

1

3
x3|

2

3
1

3

+
1

6
x3|12

3

=
2

9

The signal-to-quantization noise ratio (SQNR) is now given as

SQNR =
Px

Pq
=

2/9

1/108
=

216

9
= 24 = 13.8 dB

(c) The entropy of the quantized signal is given by

H = E[I] =
6

∑

i=1

pi log2
1

pi
, (9)

where pi is the probability of ith representation value. We see from the graph of fX(x)
that

p1 = p6 =
1

12
, p2 = p5 =

1

6
, p3 = p4 =

1

4

(9) becomes

H = 2

(

1

12
log2(12) +

1

6
log2(6) +

1

4
log2(4)

)

= 2.46 bits/symbol.

(d) We have L = 6 representation levels. The minimum code word length that we have to
use if all the code words should be of equal length is

b = ⌈log2 6⌉ = 3 bits.

A possible code is given in Table 1.

Table 1: An example of equal length code
Representation Level Codeword

r1 000
r2 001
r3 010
r4 011
r5 100
r6 101

(e) We use entropy coding, i.e., we use different number of bits for the different symbols
and allocate shortest codeword to the symbol that has the highest probability. (To get
a uniquely decodable code, no codeword should be a prefix in another codeword.)

An example is given in Table 2: The average codeword length L̄ in this case is given as

L̄ =
6

∑

i=1

pili = 2 · 4 · 1

12
+ 3 · 1

6
+ 2 · 1

6
+ 2 · 2 · 1

4
= 2.5 bits/symbol
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Table 2: An example of code with different codeword lengths
Representation Level Codeword

r1 1110
r2 110
r3 00
r4 01
r5 10
r6 1111

Problem 4

(a) Transmission over this channel without ISI is possible if Nyquist criterion is fulfilled,
i.e., we find some T > 0 and ∆t such that.

g(lT +∆t) =

{

1 for l = 0,
0 for l 6= 0

We see that g(4) = 1 ⇒ ∆t = 4ms.

We see further that g(lT + 4) = 0 for T ≥ 2ms, when l 6= 0. Therefore ISI-free
transmission is possible if the distance between the symbols is T ≥ 2ms.

The maximum signaling speed, i.e. the maximum number of channel symbols per
second, for ISI-free transmission is 1

T = 500 channel symbols/s.

(b) Here SNR [dB] = 50 = 10 log10 SNR ⇒ SNR = 105.

To achieve error-free transmission of the signal, we must have

C

T
≥ H

Ts

where H = 2.46 bits/sym (calculated in Problem 3c), 1

T = 500 sym/s, 1

Ts
= fs = 2000

sym/s and

C =
1

2
log2 (1 + SNR) =

1

2
log2

(

1 + 105
)

= 8.3 bits/channel symbol,

⇒ C

T
= 8.3 · 500 = 4152 bits/s

and
H

Ts
= 2.46 · 2000 = 4920 bits/s

Since C
T < H

Ts
, error-free transmission is not possible.
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