TTT4110 Information and Signal Theory Solution to the Exam August 2011

Problem 1

(a)

$$
\begin{aligned}
& 2 y[n]-y[n-1]=x[n] \\
\Rightarrow & 2 y[n]=x[n]+y[n-1] \\
\Rightarrow & y[n]=\frac{1}{2} x[n]+\frac{1}{2} y[n-1]
\end{aligned}
$$

The block diagram that describe the system is shown in Figure 1.

Figure 1: Block diagram of the system
(b) The frequency response is found as follows:

$$
\begin{gather*}
2 y[n]-y[n-1]=x[n] \\
\operatorname{DTFT}\{2 y[n]-y[n-1]\}=\operatorname{DTFT}\{x[n]\} \\
\Rightarrow \\
2 Y(\hat{\omega})-Y(\hat{\omega}) e^{-j \hat{\omega}}=X(\hat{\omega}) \\
\Rightarrow Y(\hat{\omega})\left(2-e^{-j \hat{\omega}}\right)=X(\hat{\omega}) \tag{1}\\
\Rightarrow H(\hat{\omega})=\frac{Y(\hat{\omega})}{X(\hat{\omega})}=\frac{1}{2-e^{-j \hat{\omega}}}
\end{gather*}
$$

To find the filter type, we must find $|H(\hat{\omega})|$.

$$
\begin{aligned}
|H(\hat{\omega})| & =\frac{1}{\left|2-e^{-j \hat{\omega}}\right|} \\
& =\frac{1}{|2-\cos \hat{\omega}+j \sin \hat{\omega}|} \\
& =\frac{1}{\sqrt{(2-\cos \hat{\omega})^{2}+\sin ^{2} \hat{\omega}}} \\
& =\frac{1}{\sqrt{5-4 \cos \hat{\omega}}}
\end{aligned}
$$

Now

$$
\hat{\omega}=0 \Rightarrow|H(\hat{\omega})|=1
$$

and

$$
\hat{\omega}=\pi \Rightarrow|H(\hat{\omega})|=1 / 3
$$

$|H(\hat{\omega})|$ is monotonically decreasing function for $\hat{\omega} \in[0, \pi]$. Therefore, $H(\hat{\omega})$ is a low pass filter.
(c) We know that

$$
\begin{equation*}
H(\hat{\omega})=\operatorname{DTFT}\{h[n]\}=\sum_{n=-\infty}^{\infty} h[n] e^{-j \hat{\omega} n} \tag{2}
\end{equation*}
$$

The $H(\hat{\omega})$ in (1) can be written as

$$
\begin{equation*}
H(\hat{\omega})=\frac{1}{2-e^{-j \hat{\omega}}}=\frac{1}{2} \frac{1}{1-\frac{1}{2} e^{-j \hat{\omega}}}=\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{1}{2} e^{-j \hat{\omega}}\right)^{n}=\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} e^{-j \hat{\omega} n} \tag{3}
\end{equation*}
$$

From (2) and (3),

$$
h[n]=\left\{\begin{array}{cc}
0, & n<0 \tag{4}\\
\frac{1}{2^{n+1}}, & n \geq 0
\end{array}=\frac{1}{2^{n+1}} u[n]\right.
$$

Alternative solution:

$$
y[n]=\frac{1}{2} x[n]+\frac{1}{2} y[n-1] \Rightarrow h[n]=\frac{1}{2} \delta[n]+\frac{1}{2} h[n-1]
$$

Since it is a causal system, $h[n]=0, n<0$. We have

$$
\begin{gathered}
h[0]=\frac{1}{2} \delta[0]+\frac{1}{2} h[-1]=\frac{1}{2} \\
h[1]=\frac{1}{2} \delta[1]+\frac{1}{2} h[0]=\frac{1}{4}=\frac{1}{2^{2}} \\
h[2]=\frac{1}{2} \delta[2]+\frac{1}{2} h[1]=\frac{1}{8}=\frac{1}{2^{3}} \\
\Rightarrow h[n]=\frac{1}{2^{n+1}}, n \geq 0
\end{gathered}
$$

This is an IIR filter because $h[n]$ is infinitely long.
(d) The input signal is

$$
x[n]=5+2 \cos \left(\frac{\pi}{3} n\right)
$$

Note that $x[n]$ consists of a DC-component $(\hat{\omega}=0)$ and a cosine-component with $\hat{\omega}=\frac{\pi}{3}$. The output signal will also contain these two frequency components only. The frequency response of the system determines the amplification/attenuation and phase shift of these two components.
We have found in 1 b$)$ that $|H(\hat{\omega})|=\frac{1}{\sqrt{5-4 \cos \hat{\omega}}}$.
$\Rightarrow|H(0)|=1$ and $\left|H\left(\frac{\pi}{3}\right)\right|=\frac{1}{\sqrt{3}}$.
Phase shift of the system is given as $\measuredangle H(\hat{\omega})=-\measuredangle\left(2-e^{-j \hat{\omega}}\right)$.
$2-e^{-j \hat{\omega}}=2-(\cos \hat{\omega}-j \sin \hat{\omega})=(2-\cos \hat{\omega})+j \sin \hat{\omega}$

$$
\Rightarrow \measuredangle H(\hat{\omega})=-\arctan \frac{\sin \hat{\omega}}{2-\cos \hat{\omega}}
$$

$\Rightarrow \measuredangle H(0)=-\arctan (0)=0$ and $\measuredangle H\left(\frac{\pi}{3}\right)=-\arctan \frac{\frac{\sqrt{3}}{2}}{2-\frac{1}{2}}=-\arctan \left(\frac{1}{\sqrt{3}}\right)=\frac{-\pi}{6}$.
The output signal is therefore given as

$$
y[n]=5+\frac{2}{\sqrt{3}} \cos \left(\frac{\pi}{3} n-\frac{\pi}{6}\right) .
$$

(e) The spectrum of the input signal is

$$
X(\hat{\omega})=\frac{1}{1+\frac{1}{2} e^{-j \hat{\omega}}} .
$$

The spectrum of the output signal is given as

$$
\begin{align*}
Y(\hat{\omega}) & =X(\hat{\omega}) \cdot H(\hat{\omega})=\frac{1}{1+\frac{1}{2} e^{-j \hat{\omega}}} \cdot \frac{1}{2-e^{-j \hat{\omega}}}=\frac{1}{2-\frac{1}{2} e^{-j 2 \hat{\omega}}}=\frac{1}{2} \frac{1}{1-\frac{1}{4} e^{-j 2 \hat{\omega}}} \\
& =\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{1}{4} e^{-j 2 \hat{\omega}}\right)^{n}=\sum_{k=0}^{\infty} \frac{1}{2^{2 k+1}} e^{-j \hat{\omega} 2 k} \tag{5}
\end{align*}
$$

The general form for $Y(\hat{\omega})$ is given as

$$
\begin{equation*}
Y(\hat{\omega})=\operatorname{DTFT}\{y[n]\}=\sum_{n=-\infty}^{\infty} y[n] e^{-j \hat{\omega} n} \tag{6}
\end{equation*}
$$

(5) and (6) \Rightarrow

$$
y[n]=\left\{\begin{array}{cl}
\frac{1}{2^{2 k+1}}, & n=2 k, k \geq 0 \tag{7}\\
0, & \text { otherwise }
\end{array}=\left\{\begin{array}{cl}
\frac{1}{2^{n+1},}, & n \geq 0 \text { and } n \text { even } \\
0, & \text { otherwise }
\end{array}\right.\right.
$$

Problem 2

(a) The signal $x(t)$ is a periodic with period $T_{0}=2 \mathrm{~s}$, and $x(t)=t$ for $t \in[-1,1]$. The coefficients c_{k} of the Fourier series are given as.

$$
c_{k}=\frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-j \frac{2 \pi k}{T_{0}} t} d t=\frac{1}{2} \int_{-1}^{1} x(t) e^{-j \pi k t} d t=\frac{1}{2} \int_{-1}^{1} t e^{-j \pi k t} d t
$$

For $k=0$,

$$
c_{0}=\frac{1}{2} \int_{-1}^{1} t d t=\left.\frac{t^{2}}{4}\right|_{-1} ^{1}=0
$$

and for $k \neq 0$,

$$
\begin{aligned}
c_{k} & =\frac{1}{2} \int_{-1}^{1} t e^{-j \pi k t} d t \\
& =\frac{1}{2}\left[-\left.\frac{t}{j \pi k} e^{-j \pi k t}\right|_{-1} ^{1}+\frac{1}{j \pi k} \int_{-1}^{1} e^{-j \pi k t} d t\right] \\
& =\frac{1}{2}\left[-\frac{1}{j \pi k} e^{-j \pi k}+\frac{-1}{j \pi k} e^{j \pi k}-\left.\frac{1}{(j \pi k)^{2}} e^{-j \pi k t}\right|_{-1} ^{1}\right] \\
& =\frac{1}{2}\left[-\frac{1}{j \pi k}\left(e^{j \pi k}+e^{-j \pi k}\right)+\frac{1}{(\pi k)^{2}}\left(e^{-j \pi k}-e^{j \pi k}\right)\right] \\
& =\frac{1}{2}\left[-\frac{2}{j \pi k} \cos (\pi k)-\frac{2 j}{(\pi k)^{2}} \sin (\pi k)\right] \\
& =\frac{j}{\pi k}(-1)^{k}
\end{aligned}
$$

(b) The sampling frequency is $f_{s}=2.5 \mathrm{~Hz}$.

$$
\Rightarrow \omega_{s}=2 \pi f_{s}=5 \pi \frac{\mathrm{rad}}{\mathrm{~s}}
$$

To avoid aliasing we must limit the spectrum of $x(t)$ to $\left[-\frac{\omega_{s}}{2}, \frac{\omega_{s}}{2}\right]=[-2.5 \pi, 2.5 \pi]$. This can be achieved with an ideal low pass filter with cutoff frequency $\omega_{c}=2.5 \pi$. The magnitude response of the filter is shown in Figure 2.

Figure 2: Magnitude response of the filter
(c) Signal $x(t)$ has frequency components in $w_{k}=\frac{2 \pi k}{T_{0}}=\pi k$. After filtering, all components for $|k|>2$ will be removed. Spectrum of $x^{\prime}(t)$ is given by

$$
c_{k}^{\prime}=\left\{\begin{array}{cl}
c_{k}, & |k| \leq 2 \tag{8}\\
0, & \text { otherwise }
\end{array}\right.
$$

The magnitude spectrum of the signal $x^{\prime}(t)$ is shown in the Figure 3.

Figure 3: Magnitude spectrum of the signal $x^{\prime}(t)$
(d) The spectrum of $x_{s}[n]$ is a periodic extension of the spectrum of $x^{\prime}(t)$ with period $2 \pi f_{s}=5 \pi$. The magnitude spectrum is shown in the Figure 4.

Problem 3

(a) Here $x_{\min }=-1, x_{\max }=1$ and $L=6$.

$$
\Delta=\frac{x_{\max }-x_{\min }}{L}=\frac{1-(-1)}{6}=\frac{1}{3}
$$

The decision levels $\left\{d_{i}\right\}$ and representation levels $\left\{r_{i}\right\}$ of the uniform quantiser are given as

$$
d_{i}:-1,-\frac{2}{3},-\frac{1}{3}, 0, \frac{1}{3}, \frac{2}{3}, 1
$$

Figure 4: Magnitude spectrum of the sampled signal $x_{s}[n]$

$$
r_{i}:-\frac{5}{6},-\frac{1}{2},-\frac{1}{6}, \frac{1}{6}, \frac{1}{2}, \frac{5}{6}
$$

(b) Quantization noise: $q=x-x_{q}$

Quantization noise Power:

$$
\begin{aligned}
P_{q}=E\left[q^{2}\right]=E\left[\left(x-x_{q}\right)^{2}\right] & =\int_{-\infty}^{\infty}\left(x-x_{q}\right)^{2} f_{X}(x) d x \\
& =\sum_{i=1}^{6} \int_{d_{i-1}}^{d_{i}}\left(x-r_{i}\right)^{2} f_{X}(x) d x
\end{aligned}
$$

Since $f_{X}(x)$ is constant at each quantization interval, the approximate formula will give the exact value of P_{q}.

$$
P_{q}=\frac{\Delta^{2}}{12}=\frac{1 / 9}{12}=\frac{1}{108}
$$

Alternative solution: Due to the symmetry of $f_{X}(x)$, we have

$$
\begin{aligned}
P_{q} & =2 \sum_{i=4}^{6} \int_{d_{i-1}}^{d_{i}}\left(x-r_{i}\right)^{2} f_{X}(x) d x \\
& =2 \int_{0}^{1 / 3}\left(x-\frac{1}{6}\right)^{2} \cdot \frac{1}{4} d x+2 \int_{1 / 3}^{2 / 3}\left(x-\frac{1}{2}\right)^{2} \cdot \frac{1}{2} d x+2 \int_{2 / 3}^{1}\left(x-\frac{5}{6}\right)^{2} \cdot \frac{3}{4} d x \\
& =\frac{1}{2} \int_{-1 / 6}^{1 / 6} y^{2} d y+\int_{-1 / 6}^{1 / 6} y^{2} d y+\frac{3}{2} \int_{-1 / 6}^{1 / 6} y^{2} d y \\
& =3 \cdot 2 \int_{0}^{1 / 6} y^{2} d y \\
& =\left.6 \cdot \frac{y^{3}}{3}\right|_{0} ^{1 / 6}=\frac{2}{6^{3}}=\frac{1}{108}
\end{aligned}
$$

To compute the signal-to-quantization noise ratio (SQNR), we first need to calculate
P_{x}.

$$
\begin{aligned}
P_{x}=E\left[x^{2}\right] & =\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x \\
& =2 \int_{0}^{\frac{1}{3}} \frac{3}{4} x^{2} d x+2 \int_{\frac{1}{3}}^{\frac{2}{3}} \frac{1}{2} x^{2} d x+2 \int_{\frac{2}{3}}^{1} \frac{1}{4} x^{2} d x \\
& =\left.\frac{1}{2} x^{3}\right|_{0} ^{\frac{1}{3}}+\left.\frac{1}{3} x^{3}\right|_{\frac{1}{3}} ^{\frac{2}{3}}+\left.\frac{1}{6} x^{3}\right|_{\frac{2}{3}} ^{1} \\
& =\frac{2}{9}
\end{aligned}
$$

The signal-to-quantization noise ratio (SQNR) is now given as

$$
\mathrm{SQNR}=\frac{P x}{P_{q}}=\frac{2 / 9}{1 / 108}=\frac{216}{9}=24=13.8 \mathrm{~dB}
$$

(c) The entropy of the quantized signal is given by

$$
\begin{equation*}
H=E[I]=\sum_{i=1}^{6} p_{i} \log _{2} \frac{1}{p_{i}}, \tag{9}
\end{equation*}
$$

where p_{i} is the probability of i th representation value. We see from the graph of $f_{X}(x)$ that

$$
p_{1}=p_{6}=\frac{1}{12}, p_{2}=p_{5}=\frac{1}{6}, p_{3}=p_{4}=\frac{1}{4}
$$

(9) becomes

$$
H=2\left(\frac{1}{12} \log _{2}(12)+\frac{1}{6} \log _{2}(6)+\frac{1}{4} \log _{2}(4)\right)=2.46 \text { bits/symbol. }
$$

(d) We have $L=6$ representation levels. The minimum code word length that we have to use if all the code words should be of equal length is

$$
b=\left\lceil\log _{2} 6\right\rceil=3 \text { bits. }
$$

A possible code is given in Table 1.

Table 1: An example of equal length code	
Representation Level	Codeword
r_{1}	000
r_{2}	001
r_{3}	010
r_{4}	011
r_{5}	100
r_{6}	101

(e) We use entropy coding, i.e., we use different number of bits for the different symbols and allocate shortest codeword to the symbol that has the highest probability. (To get a uniquely decodable code, no codeword should be a prefix in another codeword.)
An example is given in Table 2: The average codeword length \bar{L} in this case is given as

$$
\bar{L}=\sum_{i=1}^{6} p_{i} l_{i}=2 \cdot 4 \cdot \frac{1}{12}+3 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+2 \cdot 2 \cdot \frac{1}{4}=2.5 \mathrm{bits} / \text { symbol }
$$

Table 2: An example of code with different codeword lengths

Representation Level	Codeword
r_{1}	1110
r_{2}	110
r_{3}	00
r_{4}	01
r_{5}	10
r_{6}	1111

Problem 4

(a) Transmission over this channel without ISI is possible if Nyquist criterion is fulfilled, i.e., we find some $T>0$ and Δt such that.

$$
g(l T+\Delta t)=\left\{\begin{array}{lll}
1 & \text { for } \quad l=0, \\
0 & \text { for } & l \neq 0
\end{array}\right.
$$

We see that $g(4)=1 \Rightarrow \Delta t=4 \mathrm{~ms}$.
We see further that $g(l T+4)=0$ for $T \geq 2 \mathrm{~ms}$, when $l \neq 0$. Therefore ISI-free transmission is possible if the distance between the symbols is $T \geq 2 \mathrm{~ms}$.
The maximum signaling speed, i.e. the maximum number of channel symbols per second, for ISI-free transmission is $\frac{1}{T}=500$ channel symbols $/ \mathrm{s}$.
(b) Here SNR [dB] $=50=10 \log _{10} S N R \Rightarrow S N R=10^{5}$.

To achieve error-free transmission of the signal, we must have

$$
\frac{C}{T} \geq \frac{H}{T_{s}}
$$

where $H=2.46 \mathrm{bits} / \mathrm{sym}$ (calculated in Problem 3c), $\frac{1}{T}=500 \mathrm{sym} / \mathrm{s}, \frac{1}{T_{s}}=f_{s}=2000$ sym/s and

$$
\begin{gathered}
C=\frac{1}{2} \log _{2}(1+S N R)=\frac{1}{2} \log _{2}\left(1+10^{5}\right)=8.3 \mathrm{bits} / \text { channel symbol }, \\
\Rightarrow \frac{C}{T}=8.3 \cdot 500=4152 \mathrm{bits} / \mathrm{s} \\
\text { and } \frac{H}{T_{s}}=2.46 \cdot 2000=4920 \mathrm{bits} / \mathrm{s}
\end{gathered}
$$

Since $\frac{C}{T}<\frac{H}{T_{s}}$, error-free transmission is not possible.

