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Problem 1

(a)
2yln] = yln — 1] = z[n]
= 2y[n] = z[n] +y[n — 1]
1

= yln] = saln] + gyl — 1

The block diagram that describe the system is shown in Figure 1.
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Figure 1: Block diagram of the system

(b) The frequency response is found as follows:
2y[n] = y[n — 1] = z[n]
DTFT{2y[n| — y[n — 1]} = DTFT{z[n]}
= 2Y(0) - Y(Q)e ¥ = X (&)
=S Y(@)(2-e %) = X(0)
Y(w) 1
X(w) 2—ei%

= H(w) =

To find the filter type, we must find |H (@)].
1
2=
1
|2 — cosw + jsinw|
1
V(2 — cos@)? +sin? &
1
V5 —4cosw

1

[H(@)| =




Now
w=0=|Hw)| =1

and
w=m=|HW)|=1/3

|H (&)| is monotonically decreasing function for @ € [0, 7]. Therefore, H(®) is a low
pass filter.

We know that
H(&) = DTFT {h[n] Z hln)e~3%n (2)

n=—oo

The H(w) in (1) can be written as

Ho) = 111 1§:1_an i 1 o )
YT e T 21 Lee T 2442 Lo gt
From (2) and (3),
0, n<0 1
hln] = { 2n1+1> n>0 2n+1u[n] (4)

Alternative solution:

y[n] = —z[n] + %y[n — 1] = h[n] = %(5[71] + %h[n —1]

Since it is a causal system, h[n| = 0,n < 0. We have

o] = 5000] + ghl-1] = 5
B = 2op) + %h[m —i=
2} = S312 + Al = £ = o

~ hln] = 2n1+1,n >0

This is an IIR filter because h[n| is infinitely long.

The input signal is
zn] =5+2 cos(gn).

Note that x[n] consists of a DC-component (& = 0) and a cosine-component with

w = %. The output signal will also contain these two frequency components only. The
frequency response of the system determines the amplification/attenuation and phase
shift of these two components.

We have found in 1b) that |H(@)| = L

Vb—4cosw”
= |H(0)| =1 and |H(%)| = %

Phase shift of the system is given as £ H(&) = —£(2 — e7/¥).
2 —e 79 =2 (cos® — jsin®) = (2 — cos@) + jsin®
sinw

= £H(w) = —arct
() arctan o———



V3

= £H(0) = —arctan(0) = 0 and £H (%) = — arctan 2_71 =— arctan(%) = 2.
2
The output signal is therefore given as
2 m T
= 5 — _— — — ).
y[n] + \/3005(371 6)
(e) The spectrum of the input signal is
1
X(@w)=——F——.
1+ %6*3‘“

The spectrum of the output signal is given as

. . . 1 1 1 1 1
Y(w) = X(w)'H(w):1+%e_ja;.2_e—j®:2_%6—]'2&;:51_%6—]'2&)

) (Ze )= 92k+1 € (5)
n=0 k=0
The general form for Y (@) is given as
i .
Y(@) =DTFT {y[n]} = > ylnle 7" (6)
n=-—oo
(5) and (6) =
- =2k,k>0 =Lt n>0and n even
— 22k+1 bl n 9 jti — 2n+1 ) il
ylnl { 0, otherwise { 0, otherwise (7)

Problem 2

(a) The signal z(t) is a periodic with period Tp = 2s, and z(t) =t for t € [-1,1]. The
coeflicients ¢, of the Fourier series are given as.

1 _ 27k 1 1 . 1 1 )
Ck = x(t)e Ty tdt = / x(t)e_]”ktdt — / te—Imkt gy
To T _ 2

2/ -1
For k =0,
I t2
=— | tdt=—|',=0
o 2/_1 4’—1
and for k # 0,
! kt
= = te Iy
Cl 2/_1 (&
— 1 __i —jﬂkt|1 /1 oIkt gy
2| gk 1 ik 1
17 1 -1 1 .
— | pimk Jmk —jmkt)1
2 | gkt T Grk)2© |—]
17 1 . 1 . .
= — = (ITE —jmk —jnk __ _jrk
Al jwk(e +e )+(7rk)2(e e )]
1[ 2 2j .
= 3 ek cos(mk) ()2 an(wk)}
J k
= (-1
(-1



(b) The sampling frequency is fs = 2.5Hz.

d
:>WS:27rfsz571'g
S

To avoid aliasing we must limit the spectrum of z(t) to [-%*, %] = [~2.5m,2.57]. This

can be achieved with an ideal low pass filter with cutoff frequency w. = 2.57. The
magnitude response of the filter is shown in Figure 2.
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Figure 2: Magnitude response of the filter

(c) Signal x(t) has frequency components in wy = % = wk. After filtering, all

components for |k| > 2 will be removed. Spectrum of z’(t) is given by
/ Cka ’k‘ S 2
“% = { 0, otherwise (8)

The magnitude spectrum of the signal 2/(t) is shown in the Figure 3.
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Figure 3: Magnitude spectrum of the signal z’(t)

(d) The spectrum of z4[n] is a periodic extension of the spectrum of a/(t) with period
27 fs = bmw. The magnitude spectrum is shown in the Figure 4.

Problem 3
(a) Here xyin = —1, Timae = 1 and L = 6.
Tmaz — Tmi 1—(-1) 1
A — max mwn — i
L 6 3
The decision levels {d;} and representation levels {r;} of the uniform quantiser are
given as
2 1 12
d; : _17 — _7)07 Sig 1
' 373733

4
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Figure 4: Magnitude spectrum of the sampled signal z[n]
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(b) Quantization noise: ¢ = x —
Quantization noise Power:
oo
P =Bl = Ella -2, = [ (0w fx(o)is
— 00

6 d;
= Xr—T; 2 x)ax
- ;/ﬂ 2 fx()d

Since fx(x) is constant at each quantization interval, the approximate formula will
give the exact value of F,.
A? 1/9 1

12~ 12 108

Alternative solution: Due to the symmetry of fx(x), we have

P, =

6 d;
po= 2) —ri)? d
4 2i:4 /di_l(x ri)”fx (z)dx

1/3 1 2/3 1 1 1 5 3
= 2/ z— ) dw+2/ x—-)> da:+2/ x— )2 Sda
1 /6 1/6 3 [1/6
= / ydy+/ deer/ y2dy
2/ 1 ~1 2/ 16

To compute the signal-to-quantization noise ratio (SQNR), we first need to calculate



2
31 11
’ §x2dar + 2/ Za:de

2
3

The signal-to-quantization noise ratio (SQNR) is now given as

Pz 2/9 216
SQNR = — = - = Z— — 94— 138dB
Q P, 1/108 9

(c) The entropy of the quantized signal is given by

6
1
H=E[I]=Zpilog2;, (9)
i=1 v

where p; is the probability of ith representation value. We see from the graph of fx(z)

that
1 1 1

p1=p6=ﬁ,p2=p5=6,p3=p4=1

(9) becomes
1 1 1 .
H=2 e log,(12) + 6 log,(6) + 1 logy(4) | = 2.46 bits/symbol.

(d) We have L = 6 representation levels. The minimum code word length that we have to
use if all the code words should be of equal length is
b = [log, 6] = 3 bits.

A possible code is given in Table 1.

Table 1: An example of equal length code
Representation Level | Codeword
r1 000
) 001
r3 010
T4 011
s 100
6 101

(e) We use entropy coding, i.e., we use different number of bits for the different symbols
and allocate shortest codeword to the symbol that has the highest probability. (To get
a uniquely decodable code, no codeword should be a prefix in another codeword.)

An example is given in Table 2: The average codeword length L in this case is given as

6

- 1 1 1 1

L= E pili:2'4'ﬁ+3'6—|—2-6+2-2-1:2.5bits/symbol
i=1



Table 2: An example of code with different codeword lengths

Representation Level | Codeword
r1 1110
o 110
T3 00
T4 01
s 10
T6 1111

Problem 4

(a)

Transmission over this channel without ISI is possible if Nyquist criterion is fulfilled,
i.e., we find some T" > 0 and At such that.

1 for 1=0,
gUT + At) = { 0 for 1#0
We see that g(4) = 1 = At = 4ms.

We see further that g(IT +4) = 0 for T' > 2ms, when [ # 0. Therefore ISI-free
transmission is possible if the distance between the symbols is T' > 2ms.

The maximum signaling speed, i.e. the maximum number of channel symbols per

second, for ISI-free transmission is 4 = 500 channel symbols/s.

Here SNR [dB] = 50 = 10log; SNR = SNR = 10°.

To achieve error-free transmission of the signal, we must have
C H
= > -
T — T

where H = 2.46 bits/sym (calculated in Problem 3c), # = 500 sym/s, T% = fs = 2000
sym/s and

1 1
C= 5 logy (1+SNR) = 5 log, (1 + 10°) = 8.3 bits/channel symbol,

= — = 8.3-500 = 4152 bits/s

and = 2.46 - 2000 = 4920 bits/s

sl JETETION

Since % < Tﬂ, error-free transmission is not possible.
S



