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Problem 1 (2+6+4+6=18): Basics of filter theory and design 

The system function of a causal filter is given by 

𝐻(𝑧) =
1

1 −
3
4 𝑧−1 +

1
8 𝑧−2

 

1a) Provide the difference equation corresponding to 𝐻(𝑧) in the form 

𝑦[𝑛] = 𝑏0𝑥[𝑛] + 𝑏1𝑥[𝑛 − 1] + ⋯ + 𝑏𝑀𝑥[𝑛 − 𝑀] − 𝑎1𝑦[𝑛 − 1] − ⋯ − 𝑎𝑁𝑦[𝑛 − 𝑁] 

1b) Express the filter as a cascade of two filters, i.e. 

𝐻(𝑧) = 𝐻1(𝑧) ⋅ 𝐻2(𝑧) =
1

(1 − 𝑝1𝑧−1)
⋅

1

(1 − 𝑝2𝑧−1)
 

Additionally, draw the pole-zero plot based on your findings, and discuss what type of filter 

𝐻(𝑧) is (lowpass, highpass, bandpass, allpass). 

1c) Provide answers and motivations for the following: 

 What is the region of convergence (ROC) for filter 𝐻(𝑧)? 

 Is the filter stable? 

 Does the filter have linear phase? 

 Is the filter minimum-phase? 

1d) Express the filter in its parallel form 

𝐻(𝑧) = 𝐻3(𝑧) + 𝐻4(𝑧) =
𝐴

(1 − 𝑝1𝑧−1)
+

𝐵

(1 − 𝑝2𝑧−1)
 

Show that the unit impulse response is given by 

 

ℎ[𝑛] = 2ℎ3[𝑛] − ℎ4[𝑛] 

where  

ℎ3[𝑛] = (
1

2
)

𝑛

𝑢[𝑛] 

ℎ4[𝑛] = (
1

4
)

𝑛

𝑢[𝑛] 
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Problem 2 (6+9+3 = 18): Filter structures and implementations 

The filter in Problem 1 is implemented using fixed-point representation with 𝐵 + 1 bits and 

dynamic range [−1,1). Rounding is performed after each multiplication and the rounding error 

𝑒[𝑛] can be modeled as white noise with variance 𝜎𝑒
2  = 2−2𝐵/12. Rounding noise sources 

combine into a noise signal 𝑧[𝑛] at the filter output with variance 𝜎𝑧
2.  

In other words, each multiplier in the fixed-point implementation is modeled as  

𝑄(𝑎𝑦[𝑛 − 𝑘]) = 𝑎𝑦[𝑛 − 𝑘] + 𝑒[𝑛]  
 

which is equivalent to adding noise sources after multipliers in the infinite-precision realization.   

2a) Draw the direct-form structure II (DF-II) of  𝐻(𝑧) with noise sources due to rounding 

included. Determine the variance of the round-off noise at the filter output.  

2b) Draw the two possible cascade-structures, 𝐻1(𝑧)𝐻2(𝑧) and 𝐻2(𝑧)𝐻1(𝑧), with noise sources 

due to rounding included. For each combination, determine the variance of the round-off 

noise at the filter output. 

2c) Considering 𝐵 = 4 bits are used in the implementations above. Which of the three 

implementations above suffers the most from rounding noise? Which implementation 

suffers the least? What can you say about the performances of the different realizations as 

the number of bits, 𝐵, increases or decreases?  

 

[Hint:]  Assuming noise source 𝑒𝑖[𝑛] with variance 𝜎𝑒𝑖
2  acts as input to (sub-)filter ℎ𝑖[𝑛] that 

terminates at the output. The variance of the noise signal 𝑧𝑖[𝑛], due to 𝑒𝑖[𝑛], is given by  

𝜎𝑧𝑖
2 = 𝜎𝑒𝑖

2 𝑟ℎ𝑖ℎ𝑖
[0] = 𝜎𝑒𝑖

2 ∑ ℎ𝑖
2[𝑘]

𝑘

 

 

𝑒𝑖[𝑛] 
𝐻𝑖(𝑧) 

𝜎𝑒𝑖
2 = 𝐸{𝑒𝑖

2[𝑛]} 

𝑧𝑖[𝑛] 

𝜎𝑧𝑖
2 = 𝐸{𝑧𝑖

2[𝑛]} 
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Problem 3 (4+6+6+2=18): Parametric modeling 

 

The stochastic process 𝑋[𝑛] is modeled by filtering a white noise process 𝑊[𝑛], with 

autocorrelation sequence 𝛾𝑊𝑊[𝑙] = 𝜎𝑊
2 𝛿[𝑙], through a filter 𝐻1(𝑧). When 𝐻1(𝑧) is causal and 

stable, the autocorrelation sequence and spectrum of 𝑋[𝑛] can be obtained from  

𝛾𝑋𝑋[𝑙] = {
𝜎𝑊

2 ∑ ℎ1[𝑛]ℎ1[𝑛 + 𝑙]

∞

𝑛=0

, 𝑙 ≥ 0

𝛾𝑋𝑋[−𝑙], 𝑙 < 0

 

Γ𝑋𝑋(𝑓) = |𝐻1(𝑓)|2Γ𝑊𝑊(𝑓) 

3a) Provide answers (with motivations) to the following two questions: 

 What type of process, AR(𝑝), MA(𝑞), or ARMA(𝑝, 𝑞), is 𝑋[𝑛] when the noise is 

filtered through 𝐻1(𝑧) = 1 −
3

4
𝑧−1 +

1

8
𝑧−2? Provide the model order.  

 What are the advantages of using a model-based (parametric) approach to spectrum 

estimation when compared to a non-parametric approach? 

3b) Compute Γ𝑋𝑋(𝑓) and 𝛾𝑋𝑋[𝑙] when the filter is known to be 𝐻1(𝑧) = 1 −
3

4
𝑧−1 +

1

8
𝑧−2. 

3c) Assume that you are only given the values 𝛾𝑋𝑋[0] and 𝛾𝑋𝑋[1] from 3b). You decide to model 

𝑋[𝑛] using an AR(1) model.   

 Compute the best AR(1) estimate for process 𝑋[𝑛], i.e., find �̂�1 and 𝜎𝑓
2.  

 Form the spectrum estimate Γ̂𝑋𝑋(𝑓) that results from the AR(1) model. 

3d) Given 𝐻1(𝑧) in 3a), provide the whitening filter 𝐻2(𝑧) such that Γ𝑍𝑍(𝑓) = 𝜎𝑊
2 . 

 

  

𝑊[𝑛] 
𝐻1(𝑧) 

𝛾𝑊𝑊[𝑙] 

𝑋[𝑛] 
𝐻2(𝑧) 

𝑍[𝑛] 

Γ𝑊𝑊(𝑓) 

𝛾𝑋𝑋[𝑙] 

Γ𝑋𝑋(𝑓) 

𝛾𝑍𝑍[𝑙] 

Γ𝑍𝑍(𝑓) 

Fig. 1: Filtering of stochastic processes 
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Problem 4 (2+4+6+6): Sampling and rate-conversion 

 

Fig. 2 shows the spectrum 𝑋𝑎(𝐹) of the continuous-time signal 𝑥𝑎(𝑡). Signal 𝑥𝑎(𝑡) is sampled at 

rate 𝐹𝑥 = 1/𝑇𝑥 to generate sequence 𝑥[𝑛] = 𝑥𝑎(𝑡)|𝑡  =𝑛𝑇𝑥
. The sampling rate is thereafter 

changed in digital domain from 𝐹𝑥 to 𝐹𝑦 by passing 𝑥[𝑛] through the system in Fig. 3. Filter  

ℎ[𝑘] is a lowpass filter with frequency response 

𝐻(𝑓𝑣) = {
1,   |𝑓𝑣| ≤

1

2 max(𝐼,𝐷)

0,      otherwise
  

4a) What is the minimum sampling rate 𝐹𝑥 that can be used without losing information in the 

sampling process 𝑥[𝑛] = 𝑥𝑎(𝑡)|𝑡  =𝑛𝑇𝑥
? Describe what happens if the sampling rate is 

chosen smaller than this minimum rate. 

4b) Sketch the spectrum 𝑋(𝑓) =  ∑ 𝑥[𝑛]𝑒−𝑗2𝜋𝑓𝑛∞
𝑛=−∞  for the cases when 𝐹𝑥 = 4000 Hz and 

𝐹𝑥  =  16000 Hz. Make appropriate comments relevant to aliasing and periodicity. 

4c) For the case when 𝐹𝑥 = 16000 Hz, 𝐼 = 2 and 𝐷 = 3 

 Sketch the spectra of signals 𝑣[𝑘], 𝑤[𝑘] and 𝑦[𝑚] (i.e., 𝑉(𝑓), 𝑊(𝑓) and 𝑌(𝑓)) 

 What is the rate of sequence 𝑦[𝑚]? 

 Comment on whether any information is lost in the rate conversion 

4d) Repeat question 4c) for the case when 𝐹𝑥 = 16000 Hz, 𝐼 = 2 and 𝐷 = 6 

𝑥[𝑛] 
↑ 𝐼 

Rate: 𝐹𝑥 

𝑣[𝑘] 𝑦[𝑚] 
ℎ[𝑘] 

𝑤[𝑘] 
↓ 𝐷 

Rate: 𝐹𝑦 =
𝐼

𝐷
𝐹𝑥 

Fig. 3: Rate-conversion by a fractional factor  
𝐼

𝐷
 

𝑋𝑎(𝐹) 

𝐹 [Hz] 
4000 −4000 

Fig. 2: Spectrum 𝑋𝑎(𝐹) of continuous-time signal 𝑥𝑎(𝑡) 



 Appendix: TTT4120 Table of formulas A1 (A2) 

Appendix: TTT4120 Table of formulas, 2016 

A. Sequences: 

 ∑ 𝛼𝑛𝑁−1
𝑛=0 =

1−𝛼𝑁

1−𝛼
 

 |𝛼| < 1 ⇒ ∑ 𝛼𝑛∞
𝑛=0 =

1

1−𝛼
 and − ∑ 𝛼𝑛−∞

𝑛=−1 =
1

1−𝛼
   

∑ (𝑛 + 1)𝛼𝑛𝑁−1
𝑛=0 =

1−𝛼𝑁

(1−𝛼)2
−

𝑁𝛼𝑁

1−𝛼
 ; 𝛼 ≠ 1 

|𝛼| < 1 ⇒ ∑ (𝑛 + 1)𝛼𝑛∞
𝑛=0 =

1

(1−𝛼)2  

B. Linear convolution: 

𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥[𝑛] = ∑ ℎ[𝑘]𝑥[𝑛 − 𝑘]∞
𝑘=−∞ = ∑ 𝑥[𝑘]ℎ[𝑛 − 𝑘]∞

𝑘=−∞   

𝑌(𝑧) = 𝐻(𝑧)𝑋(𝑧) 

𝑌(𝑓) = 𝐻(𝑓)𝑋(𝑓) 

𝑌(𝑘) = 𝐻(𝑘)𝑋(𝑘), 𝑘 = 0,1, … , 𝑁 − 1 where 𝑌(𝑘) = 𝑌(𝑓𝑘) with 𝑓𝑘 = 𝑘/𝑁  

C. Transforms: 

Z-transform: 𝐻(𝑧) = ∑ ℎ[𝑛]𝑧−𝑛∞
𝑛=−∞  

DTFT:  𝐻(𝑓) = ∑ ℎ[𝑛]𝑒−𝑗2𝜋𝑓𝑛∞
𝑛=−∞  

DFT:  𝐻(𝑘) = ∑ ℎ[𝑛]𝑒−𝑗2𝜋𝑓𝑛𝑘/𝑁𝑁−1
𝑛=0  𝑘 = 0,1, … , 𝑁 − 1 

IDFT:  ℎ[𝑛] =
1

𝑁
∑ 𝐻(𝑘)𝑒𝑗2𝜋𝑓𝑛𝑘/𝑁𝑁−1

𝑘=0  𝑛 = 0,1, … , 𝑁 − 1 

D. Sampling theorem: 

Given an analog signal 𝑥𝑎(𝑡) sampled at 𝐹𝑠 = 1/𝑇. The DTFT of the resulting discrete-time 

sequence 𝑥[𝑛] = 𝑥𝑎(𝑡)|𝑡=𝑛𝑇  is given by 

𝑋(𝑓) = 𝑋(𝐹/𝐹𝑠) = 𝐹𝑠 ∑ 𝑋([𝑓 − 𝑘]𝐹𝑠)∞
𝑘=−∞   

E. Autocorrelation, energy spectrum and Parseval: 

Given a sequence ℎ[𝑛] with finite energy 𝐸ℎ 

Autocorrelation: 𝑟ℎℎ[𝑙] = ∑ ℎ[𝑛]ℎ[𝑛 + 𝑙]∞
𝑛=−∞   𝑙 ∈ ℤ 

Energy spectrum: 𝑆ℎℎ(𝑧) = 𝐻(𝑧)𝐻(𝑧−1) ⇒ 𝑆ℎℎ(𝑓) = |𝐻(𝑓)|2  

Parseval’s theorem: 𝐸ℎ = 𝑟ℎℎ[0] = ∑ ℎ2[𝑛]∞
𝑛=−∞ = ∫ |𝐻(𝑓)|2𝑑𝑓

2𝜋

0
 

  



 Appendix: TTT4120 Table of formulas A2 (A2) 

F. Multirate: 

Decimation (downsampling) where 𝑇𝑦 = 𝐷𝑇𝑥 

𝑣(𝑚𝑇𝑦) = ∑ ℎ[(𝑚𝐷 − 𝑘)𝑇𝑥]𝑥(𝑘𝑇𝑥)∞
𝑘=−∞   𝑚 ∈ ℤ 

Interpolation (upsampling) where 𝑇𝑦 = 𝑇𝑥/𝐼 

𝑦(𝑙𝑇𝑦) = ∑ ℎ[(𝑙 − 𝑛𝐼)𝑇𝑦]𝑥(𝑛𝑇𝑥)∞
𝑛=−∞   𝑙 ∈ ℤ 

Rate coversion where 𝑇𝑦 = 𝐷𝑇𝑣 =
𝐷

𝐼
𝑇𝑥 

𝑦(𝑙𝑇𝑦) = ∑ ℎ[(𝑙𝐷 − 𝑚𝐼)𝑇𝑣]𝑥(𝑚𝑇𝑥)∞
𝑚=−∞   𝑙 ∈ ℤ 

G. Autocorrelation, power density spectrum and Wiener-Khintchin: 

Given a wide-sense stationary and ergodic sequence 𝑋[𝑛] with infinite energy 

Autocorrelation: 𝛾𝑋𝑋[𝑙] = 𝐸{𝑋[𝑛]𝑋[𝑛 + 𝑙]}  𝑙 ∈ ℤ 

Power spectrum: 𝛤𝑋𝑋(𝑧) = 𝒵{𝛾𝑋𝑋[𝑙]} ⇒  

Wiener-Khintchin: 𝛤𝑋𝑋(𝑓) = DTFT{𝛾𝑋𝑋[𝑙]} = ∑ 𝛾𝑋𝑋[𝑙]𝑒−𝑗2𝜋𝑓𝑙∞
𝑙=−∞   

H. Yule-Walker and Normal equations where 𝒂𝟎 = 𝟏: 

Autocorrelation: ∑ 𝑎𝑘𝛾𝑋𝑋[𝑛 − 𝑘]𝑃
𝑘=0 = 𝜎𝑓

2𝛿[𝑛] 𝑛 = 0, … , 𝑝 

Normal equations: ∑ 𝑎𝑘𝛾𝑋𝑋[𝑛 − 𝑘]𝑃
𝑘=1 = −𝛾𝑋𝑋[𝑛] 𝑛 = 1, … , 𝑝 

I. Some common z-transform pairs: 

 


