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Side 2 av 5 (+ vedlegg)
Problem 1 : (3+5+4+4+6)

Given a stable LTI-system H(z) in the form H(z) = H1(z)H2(z) where

H1(z) =

1 + z�1

1� 1
3z

�1
(1)

H2(z) =

1

1 +

1
3z

�1
(2)

1a) Are the systems H1(z) og H2(z) causal and/or do they have minimum phase? State
the reason for your answers!

Answer :
The pole values are 1

3 and �1
3 , i.e inside the unit, thus both systems are causal. A

minimum phase system is invertible, i.e all poles and zeros must be on the inside of
the unit circle. The zero at z = �1 is however on the unit circle, thus H1(z) does not
have minimum phase. H2(z) does not have zeros (except for z = 0) and has therefore
minimum phase.

1b) Show that H(z) can be written in the following DF2 and parallel form

H(z) =

1 + z�1

1� 1
9z

�2
(3)

H(z) = H3(z) +H4(z) =
2

1� 1
3z

�1
� 1

1 +

1
3z

�1
(4)

Answer :
The DF2 form is easily derived by multiplying the denominators in H1(z) og H2(z)
This gives eq 3.

The parallel form is derived by residual calculation :

H(z) =
A

1� 1
3z

�1
+

B

1 +

1
3z

�1
=

(A+B) +

1
3(A� B)z�1

1� 1
9z

�2

Comparing constants

A+B = 1

1

3

(A� B) = 1

easily lead to A = 2 and B = �1



1c) Show that the unit pulse responses of H1(z) and H(z) fullfil the following

h1(n) =

(
1 n = 0

4(

1
3)

n n > 0

(5)

h(n) = 2(

1

3

)

n � (�1

3

)

n n � 0 (6)

Answer :
We first define G1(z) =

1
1� 1

3 z
�1 , g1(n) = (

1
3)

nu(n). Further rewriting H1(z) =

1
1� 1

3 z
�1 +

z

�1

1� 1
3 z

�1 = G1(z) + z�1G1(z) we have h1(n) = g1(n) + g1(n� 1) = (

1
3)

nu(n) +

(

1
3)

n�1u(n� 1) = (

1
3)

nu(n) + 3(

1
3)

nu(n� 1)

For n = 0 the second term is zero thus :

h1(n) =

(
1 n = 0

4(

1
3)

n n > 0

The unit pulse response in eq 6 is directly given by the parallel form in eq 4.

1d) Show that the unit pulse response h(n) of the total system fullfils the following
1X

n=0

|h(n)| =

9

4

(7)

r
hh

(0) =

81

40

(8)

Answer :
We have to inspect h(n) (eq 6) both for even n = 2m and odd n = 2m + 1 indexes,
i.e

P
n

|h(n)| =
P

neven

|h(n]|+
P

nodd

|h(n)| =
P1

m=0 ge(m) +

P1
m=0 go(m) where

g
e

(m) = h(2m) = 2(

1

3

)

2m � (�1

3

)

2m
= 2(

1

9

)

m � (

1

9

)

m

= (

1

9

)

m m = 0, . . . ,1

g
o

(m = h(2m+ 1) = 2(

1

3

)

2m+1 � (�1

3

)

2m+1
=

2

3

(

1

9

)

m

+

1

3

(

1

9

)

m

= (

1

9

)

m m = 0, . . . ,1

Thus we have
1X

n=0

|h(n)| =
1X

m=0

(

1

9

)

m

+

1X

m=0

(

1

9

)

m

= 2

1X

m=0

(

1

9

)

m

= 2

1

1� 1
9

=

9

4

For the energy of the system we get

r
hh

(0) =

1X

n=0

h2
(n) =

1X

m=0

g2
e

(m) +

1X

m=0

g2
o

(m) = 2

1X

m=0

((

1

9

)

m

)

2
= 2

1

1� 1
81

=

81

40

Alternatively r
hh

(0) can be found by squaring and summing eq. 6.



1e) Sketch the filter structurs of the DF2 form (eq 3) and the parallel form (eq 4). In the
latter structure the gain 2 (in the first term of eq 4) shall be placed in front of the
corresponding feedback loop.

How many different structures can you choose among if you instead want to use a
cascade structure of first order sections?

Answer :

Note that the figures include noise sources due to quantization! This is not default
required from the students!

Figure 1: DF2-structure

If we define G3(z) = 1 + z�1 and use the definitions in 1c for G1(z) we have H(z) =
G1(z)H2(z)G3(z). This gives us a total of six combinations for cascading the three sub-
filters. In addition we can use H1(z) = G3(z)G1(z) in a DF2 form and we then have
two new options in H(z) = H1(z)H2(z) = H2(z)H1(z). Alternatively we can merge
G3(z)H2(z) to a DF2-form and cascade with G1(z) to get two extra alternatives. Thus
we have totally ten possible alternatives for a cascade structure!



Figure 2: Parallel structure with gain in front of loop



Side 3 av 5 (+ vedlegg)
Problem 2 : (4+5+4+5+5)

The filter H(z) given by eq 3 and 4 in problem 1 shall be implemented in fixed point
representation using B + 1 bits and dynamic range [�1, 1). Rounding (quantization) is
performed after each multiplication and the rounding error, e(n), can be regarded as white
noise with power �2

e

.

The filter input x(n) has a uniform amplitude density; i.e. x
max

= max

n

|x(n)| = 1.

2a) Find the resulting noise power at the output as a function of �2
e

for the DF2 structure.

Answer :
The DF2-structure is shown in task 1e. There is only one multiplication and the unit
pulse response from there to the output is given by h(n). Thus the noise at the output
is given by �2

y

= �2
e

r
hh

(0) =

81
40�

2
e

2b) Find the necessary scaling factor at the input of the DF2 structure in order to avoid
overflow.

Find the reduction in signal-to-noise ratio (S/N) at the output due to scaling.

Answer :
We have two summation nodes. One is at the output, i.e. the unit pulse response
from the input is h(n). From task 1d we have that

P
n

|h(n]| = 9
4 .

The other node is at the input, i.e the transfer function from the input is

Q(z) =
1

1� 1
9z

�2
=

1

(1� 1
3z

�1
)(1 +

1
3z

�1
)

=

1

2

[

1

1� 1
3z

�1
+

1

1 +

1
3z

�1
]

where the last parallel form is easily found by doing the same exercise as in task 1b.
Thus the corresponding unit pulse response is

q(n) =
1

2

[(

1

3

)

n

+ (�1

3

)

n

]

Thus q(n) = (

1
3)

n for n even and q(n) = 0 for n odd. Using n = 2m this results in

X

n

|q(n]| =
X

m

(

1

9

)

m

=

9

8



Thus the output node decides the scaling factor to be 9
4 .

The signal power, and thus the S/N is reduced by the square of the scaling factor, i.e
by a factor of 81

16 ⇡ 5.
Note that the intro of a scaling factor is a new multiplication. Thus, to be
absolutely correct, one should add a corresponding rounding noise source
after the scaling. However, most previous exam solution have ignored this.
Thus both kind of answers should be accepted as correct!

In this solution (2d and 2e) this last noise source is omitted.

2c) Find the resulting noise power at the output as a function of �2
e

for the parallel
structure.

Answer :
We now have three multiplications, one in each loop and the gain of 2 in the upper
branch. As (�1

3)
2n

= (

1
3)

2n
= (

1
9)

n all three noise sources will contribute by the same
amount of power at the output, i.e.

�2
y

= 3�2
e

X

n

((

1

3

)

n

)

2
= 3�2

e

X

n

(

1

9

)

n

= 3�2
e

9

8

=

27

8

�2
e

2d) Find the necessary scaling factor at the input of the parallel structure in order to
avoid overflow.

Find the reduction in signal-to-noise ratio (S/N) at the output due to scaling.

Answer :
We now have three summation nodes. One is at the output and we have calculated
the corresponding scale factor 9/4 in task 2b. The other two are in the feedback loops.
The unit pulse responses from the input are given by the two terms in eq 6. Given
that the gain is in front of the corresponding loop we have

P
n

2(

1
3)

n

= 2

1
1� 1

3

= 3 for
that node and

P
n

(

1
3)

n

=

3
2 for the other loop. Thus the largest of the three values is 3.

The reduction of the S/N corresponding to the downscaling by 3 is 3

2
= 9.

2e) An option for the parallel structure is to move the gain 2 to after the feedback loop.

Find the necessary scaling factor at the input of the corresponding parallel structure.

Find the reduction in signal-to-noise ratio (S/N) at the output due to scaling.

Which of the three scaled structures are best with respect to signal-to-noise ratio
(S/N) at the output?



Answer :

We have also now three summation nodes. One is at the output and we have calcu-
lated the corresponding scale factor 9/4 in task 2b. The other two are in the feedback
loops. The unit pulse responses from the input are given by respectively (�1/3)n and
(1/3)n These two give the same scaling need, i.e 3/2. Thus the largest of the three
values is 9/4.

The reduction of the S/N corresponding to the downscaling by is (9/4)2 = 81/16 ⇡ 5

(as for the DF2 structure).

We now have a new situation wrt rounding noise. The noise in the upper branch
of Figure 2 (task 1e) is now multiplied by 2, i.e the power by 4, while the noise from
the gain multiplication is at the output. Thus we have :

�2
y

= �2
e

X

n

((2

1

3

)

n

)

2
+ �2

e

X

n

((�1

3

)

n

)

2
+ �2

e

= 5�2
e

9

8

+ �2
e

=

53

8

�2
e

Let us denote the signal power at the output (before scaling) by P
y

The corresponding
output power values after downscaling of the input are respectively 16P

y

/81, P
y

/9
and 16P

y

/81 for the DF2 and the two parallel structures. Thus the S/N at the output
after scaling is

S/N
DF2 =

16P
y

/81

81�2
e

/40
=

P
y

�2
e

16 ⇤ 40
81

2
⇡ 0.0975

P
y

�2
e

S/N2par =

P
y

/9

27�2
e

/8
=

P
y

�2
e

8

27 ⇤ 9 =

P
y

�2
e

8 ⇤ 3 ⇤ 9
81

2
⇡ 0.0329

P
y

�2
e

S/N
par2 =

16P
y

/81

53�2
e

/8
=

P
y

�2
e

16 ⇤ 8
81 ⇤ 53 ⇡ 0.0298

P
y

�2
e

Thus the scaled DF2 structure gives approximately three times higher S/N than the
two parallel structures. Further it is not a good idea to move the branch gain of 2 to
after the loop.



Side 4 av 5 (+ vedlegg)
Problem 3 : (3+6+6+5)

3a) Define respectively an ARMA[P,M], AR[P] and MA[M] process.

Answer :
An ARMA[P,M] process is the output when white noise with power �2

w

is filtered
through an IIR-filter with transfer function H(z) = BM (z)

AP (z) where the subindexes give
the order of the nominator (number of zeros) and denominator (number of poles).
In the AR[P]-process the nominator polynom is B

M

(z) = 1. This correponds to
M = 0, i.e no zeros (a so called allpole-filter).
In the MA[M]-process the denominator polynom is A

P

(z) = 1. This correponds to
P = 0, i.e no poles (FIR-filter).
The AR[P]-model is often preferred as the best compromize between modeling capacity
and mathematical complexity.

3b) Given a physical signal x
a

(t). We measure N samples x(n) = x
a

(nT ), n = 0, N � 1

from the signal.

Explain which approximations we have to use in order to be able to estimate the
frequency spectrum of an autoregressive process.

Answer :
We need to approximate the signal x(n) by a statistical model such that we can esti-
mate the frequency content from the measured samples. The approximations needed
for this are :

1. Model the signal as a nonstationary process
2. Approximate the above as a short-time stationary/ergodic process. First we must

define the terms ergodic and short-time
3. In a stationary process the statistical properties (acf and the frequency specter)

do not change with time
4. The statistical properties of an ergodic process can be derived from a single

sequence x(n)

5. Estimates of the statistical properties of an ergodic process can be derived from
a finite number of samples x(n) n = 0, . . . , N � 1

6. A short-time ergodic process will have (approximately) constant properties over
a number N of samples. Thus we can estimate new (short-time) properties which
change for every new set of N samples we measure.

7. For many practical applications/signals the short-time ergodic estimation tech-
nique gives satisfactory results



8. Parametric models like an AR[P] model typically gives better spectrum estimates
than the classical nonparametric periodogram.

3c) Assume that we have estimated the first four autocorrelation values of x(n) to be

�̂
xx

(0) = 1.25, �̂
xx

(1) = 0.75, �̂
xx

(2) = 0.25 og �̂
xx

(3) = �0.10.

Finn the best AR[1]- and the best AR[2]-model for x(n).

Answer :

For the AR[1]-modell we have from the Normal equations (see appendix) given m =

1 = P :
a1�xx(0) = ��

xx

(1) ) a1 = ��
xx

(1)/�
xx

(0).
Inserting for the acf-estimates we get : â1 = �0.75/1.25 = �3/5 = �0.6
Using the Y-W equations for m = 0 we get :
�2
f

= �
xx

(0) + a1�xx(1)

Inserting the estimates we get ˆ�2
f

= 1.25� 0.6 ⇤ 0.75 = 0.8

For the AR[2]-modell we have from the Normal equations (see appendix) given m = 1

and m = 2 = P :

a1�xx(0) + a2�xx(1) = ��
xx

(1)

a1�xx(1) + a2�xx(0) = ��
xx

(2)

Inserting the acf-estimates and doing the standard calculation of two unknowns in two
equations we get :
â1 = �9/16 = �3/4 and â2 = +1/4
Using the Y-W equations for m = 0 we get :
�2
f

= �
xx

(0) + a1�xx(1) + a2�xx(2)

Inserting the estimates we get ˆ�2
f

= 1.25� 0.75 ⇤ 3/4 + 0.25 ⇤ 1/4 = 0.75



3d) Explain the principle for design of a Wiener filter. If possible use a sketch.

Answer :
A physical (ergodic) signal s(n) with known properties is contaminated by white

Figure 3: Wiener-filter system

noise w(n) with known power. We observe the sum x(n) = s(n) + w(n) and want
to use a filter to convert x(n) into a signal y(n) which is ”as similar as possible” to
another ergodic signal d(n) with known properties. We choose to use mean square
error (MSE) E[e2(n)] where e(n) = d(n) � y(n) as a measure for similarity. Closed
form solutions for minimum MSE can be found both for the noncausal IIR case and
for the causal IIR and FIR cases. The most used application is d(n) = s(n), i.e. noise
reduction.
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Problem 4 (3+6+5+4)

4a) Set up the formula for a N-point Diskret Fourier Transform (DFT) for a sequence
x(n) of finite length M

Also set up the formula for the inverse DFT (IDFT). How must N be chosen if one
wishes reproduce x(n) from the DFT values?

Answer :

X(k) =

M�1X

n=0

x(n)e�2j⇡nk/N k = 0, N � 1

x(n) =
1

N

N�1X

k=0

X(k)e2j⇡nk/N n = 0,M � 1

Formula for x(n) is only correct if N � M (to reproduce x(n) from X(k))

4b) One wants to filter an infinitely long sequence x(n), n = �1,1 by a FIR-filter h(n)
of length L.

Explain how the filtering can be performed in the frequency domain by using the
so called "overlap-add" method.

Compare the"overlap-add" method to standard time domain filtrering with respect
to the number of multiplications and additions per output sample

Answer :
One splits the input sequence into consecutive segments x

i

(n) of lengths M

x
i

(n) = x(n+ iM) for n = 0, . . . ,M � 1 and i = �1,1

This leads to :

y(n) = h(n) ⇤ x(n) = h(n) ⇤
X

i

x
i

(n) =
X

i

h(n) ⇤ x
i

(n) =
X

i

y
i

(n)

where the output segments y
i

(n) have lengths M+L�1. Thus two consecutive output
segments overlap by L samples, but are easily summed to achieve y(n).
The calculation of y

i

(n) can be done in the frequency domain as both the input segment
and the filter have finite lengths. We choose N = 2

R � M + L � 1 (in order to use
the FFT and be able to reproduce y

i

(n)). Further given that H(k) k = 0, N � 1 is
calculated only once, i.e precalculated, the algorithm is as follows : For each segment
i = �1,1



• Calculate X
i

(k) k = 0, N � 1 from x
i

(n)

• Calculate Y
i

(k) = H(k)X
i

(k) k = 0, N � 1

• Calculate y
i

(n) n = 0,M + L� 1 from Y
i

(k)

• Calculate y(n) from two consecutive segments y
i

(n)

To produce N output values of y(n) by time domain filtering we need M*N mults+adds.
Using the frequency domain method and FFT we need N ⇤R+N+N ⇤R = N ⇤(2R+1)

where R = log2(N). Thus for any N where (2log2(N)+1) < M the overlap-add tech-
nique with FFT should be used.

4c) One wants to use DFT to perform a frequency analysis of an infinitely long sequence
x(n), n = �1,1. In real life one has to base the analysis of a finite segment of
length K of the sequence.

Discuss the problems regarding frequency resolution and frequency "leakage" (side-
lobes) as a function of the segment length K.

How can one manage to achieve a compromise with respect to the two non-idealities
in the frequency domain?

Answer :
Just using a segment of length K is mathematically equivalent to using a rectangular
window of length K. The two nonidealities can be explained by looking at the fre-
quency content of a segment of a harmonic (sinus). Ideally a harmonic is a dirac pulse
but using only a segment (i.e. a window) gives a sinc-like function; i.e. a bandwidth
and sidelobes. The bandwidth is proportional to C ⇤ (1/K) (where C is a constant)
and obviously gives us the frequency resolution. The sidelobes give us the frequency
leackage. For a rectangular window the constant C is relatively small, i.e the frequency
resolution is high. However the sidelobes are relatively high and do only converge to-
wards a finite level (-26 dB relatively to the main lobe ) for K ! 1.
A tapered window will decrease the frequency resolution (larger value of C) but also
increase the sidelobe attenuation. Different tapering form will give minor differences
in this compromize.



4d) The radix-2 Fast Fourier Transform (FFT) is a fast algorithm for calculating the DFT
of a sequence when the length N is a power of 2, i.e. N = 2

R

Explain briefly the principle of the radix-2 FFT algorithm.

Answer :
The main principle for the FFT is that one can implement a N = 2

R point DFT
by using 2 N/2 point DFTs and N multiplications. And it is easily shown than the
latter leads to fewer mults+adds (m+a). A general N point DFT use N2 m+a. Thus
N2 � 2 ⇤ (N/2)2) +N = N2/2 +N for all values N > 2! The difference gets large for
typical values of N , i.e. N = 64, 128, 256, 512, 1024, ....
The radix-2 FFT successively splits the DFTs into smaller such that one ends up with
a structure consisting of (N/2) ⇤ log2(N) 2-point DFTs (so called butterflies), which
each requires maximum 2 m+a.


