NORWEGIAN UNIVERSITY
 OF SCIENCE AND TECHNOLOGY
 DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS

Contact during examination:
Name: Magne H. Johnsen
Tel.: 93025534

EXAMINATION IN COURSE TTT4120 DIGITAL SIGNAL PROCESSING

Date: Wednesday, August 12th 2009
Time: 09.00-13.00

Permitted aids: D-No calculators allowed.
 No printed or handwritten materials allowed.

INFORMATION

- The examination includes 4 problems.
- Problem 1 deals with basic properties of systems/filters.
- Problem 2 deals with multirate systems.
- Problem 3 deals with filter structures.
- Problem 4 deals with stationary processes and parametric estimation.
- The weight of each subproblem is given in parenthesis. The total number of points are 100 .
- The solution steps should be evident and all answers should be justified!
- Some basic formulas can be found in the appendix.
- The teacher will go around twice, around 10.00 and around 11.45.

Problem $1 \quad(6+8+6+5=25$ points $)$

1a) Which properties have to be fulfilled in order to describe a system by its unit pulse response $h(n)$?

Define the two properties stability and causality in terms of $h(n)$.

1b) Define the z-transform $H(z)$ in terms of $h(n), n=-\infty, \infty$.
What is meant by the term "region of convergence" (ROC) of the transfer function $H(z)$?

Sketch ROC in the z-plane for respectively a causal and anti-causal system.
What area in the z-plane must be included in ROC if the system is to be stable? State the reason for your answer.

1c) Given a filter with the following transfer function

$$
\begin{equation*}
H(z)=\frac{1-b z^{-1}}{1+a z^{-1}} \tag{1}
\end{equation*}
$$

Given $a \geq 0$ and $b \geq 0$.

Give the possible values for the filter coeffisients $\{a, b\}$ and the corresponding ROC when the system is stable, causal and has minimum phase.

1d) Derive the expression for the unit pulse response $h(n)$.

Problem 2 ($7+8+8=25$ points)

Given the following block diagram for a general samplingrate converter. Assume ideal filters.

2a) Give the expression for $w(m)$ in terms of $x(n)$ and $h_{u}(m)$.
Give the expression for $y(l)$ in terms of $w(m)$ and $h_{d}(m)$.
Give the expression for $y(l)$, in terms of $x(n)$ and $h(m)=h_{u}(m) * h_{d}(m)$.

$$
\begin{equation*}
x(n)=x_{a}\left(n T_{x}\right)=\sin \left(2 \pi F_{1} n T_{x}\right)+2 \sin \left(2 \pi F_{2} n T_{x}\right) \tag{2}
\end{equation*}
$$

In the remaining part of problem 2 the input signal is given by equation 2 where $F_{1}=100$ $\mathrm{Hz}, F_{2}=200 \mathrm{~Hz}$ and $F_{x}=\frac{1}{T_{x}}=1000 \mathrm{~Hz}$

2b) Sketch $|X(f)|$ for $f \in[0,0.5]$ where $f=\frac{F}{F_{x}}$.
Sketch $|Y(f)|$ for $f \in[0,0.5]$ where $f=\frac{F}{F_{y}}$ and give the cut-off frequency for the filter $h(m)$ in Hz (real frequency) for $\frac{U}{D}=\frac{1}{2}$

Sketch $|Y(f)|$ for $f \in[0,0.5]$ where $f=\frac{F}{F_{y}}$ and give the cut-off frequency for the filter $h(m)$ in Hz (real frequency) for $\frac{U}{D}=\frac{2}{1}$

2c) Sketch $|Y(f)|$ for $f \in[0,0.5]$ where $f=\frac{F}{F_{y}}$ and give the cut-off frequency for the filter $h(m)$ in Hz (real frequency) for $\frac{U}{D}=\frac{2}{3}$

Sketch $|Y(f)|$ for $f \in[0,0.5]$ where $f=\frac{F}{F_{y}}$ and give the cut-off frequency for the filter $h(m)$ in Hz (real frequency) for $\frac{U}{D}=\frac{1}{3}$
Comment on the result.

Problem 3 ($6+8+5+6=25$ points)

3a) Given the following stable filter $H_{1}(z)$.

$$
\begin{equation*}
H_{1}(z)=\frac{z^{-1}-a}{1-a z^{-1}} \tag{3}
\end{equation*}
$$

Show that the filter is allpass.

Discuss the possibility of that the filter can have minimum phase.

In the remaining part of problem 3 the filter coeffisient is set to $a=\frac{1}{2}$.

3b) Given a stable, causal filter $H(z)$ on the form

$$
\begin{equation*}
H(z)=H_{1}(z) H_{2}(z) \tag{4}
\end{equation*}
$$

where $H_{1}(z)$ is given in problem 3a (with $a=\frac{1}{2}$) and $H_{2}(z)$ is given as

$$
\begin{equation*}
H_{2}(z)=\frac{1}{1+\frac{1}{2} z^{-1}} \tag{5}
\end{equation*}
$$

Show that $H(z)$ can be transformed to the following parallel form

$$
\begin{equation*}
H(z)=H_{3}(z)+H_{4}(z)=\frac{\frac{3}{4}}{1-\frac{1}{2} z^{-1}}+\frac{-\frac{5}{4}}{1+\frac{1}{2} z^{-1}} \tag{6}
\end{equation*}
$$

3c) Derive the unit pulse response of $H(z)$

3d) Sketch respectively the Direct Form 2 (DF2) and parallel structures for $H(z)$.

Problem $4 \quad(7+6+4+8=25$ points)

White noise $w(n)$ with power σ_{w}^{2} is input to a general causal, stable filter with unit pulse response $g(n) \quad n=0, \infty$.

The autocorrelation function $\gamma_{y y}(m), \quad m=-\infty, \infty$, and the power spectrum $\Gamma_{y y}(z)$ of the resulting output signal $y(n)$ are given by

$$
\begin{gather*}
\gamma_{y y}(m)= \begin{cases}\sigma_{w}^{2} \sum_{n=0}^{\infty} g(n) g(n+m) & m \geq 0 \\
\gamma_{y y}(-m) & m<0\end{cases} \tag{7}\\
\Gamma_{y y}(z)=\sigma_{w}^{2} G(z) G\left(z^{-1}\right) \tag{8}
\end{gather*}
$$

In problem 4 the filters $H_{1}(z)$ and $H_{3}(z)$ are given by problem 3.

4a) Find the autocorrelation function of the output signal $y(n)$ when $G(z)=H_{3}(z)$.
$\mathbf{4 b}$) Find the autocorrelation function of the output signal $y(n)$ when $G(z)=H_{1}(z)$.

4c) Which kind of parametric process does the output signal $y(n)$ represent when white noise is input to respectively $H_{1}(z)$ and $H_{3}(z)$?

4d) Find the process parameters to the best AR[1]-model of the output signal $y(n)$ when the filter is given by respectively $H_{1}(z)$ and $H_{3}(z)$.

Give a short argument for the results.

Some basic equations and formulaes.

A. Sequences :

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \alpha^{n}=\frac{1}{1-\alpha} \Longleftrightarrow|\alpha|<1 \\
& \sum_{n=0}^{N-1} \alpha^{n}=\frac{1-\alpha^{N}}{1-\alpha}
\end{aligned}
$$

B. Linear convolution :

$$
\begin{aligned}
& y(n)=h(n) * x(n)=\sum_{k} h(k) x(n-k)=\sum_{k} x(k) h(n-k) \\
& Y(z)=H(z) X(z) \Rightarrow Y(f)=H(f) X(f) \Rightarrow Y(k)=H(k) X(k) \quad k=0, \ldots, N-1
\end{aligned}
$$

C. Transforms :

$$
\begin{aligned}
& H(z)=\sum_{n} h(n) z^{-n} \Rightarrow H(f)=\sum_{n} h(n) e^{-j 2 \pi n f} \\
& H(k)=\sum_{n} h(n) e^{-j 2 \pi n k / N} \quad k=0, \ldots, N-1 \\
& h(n)=\sum_{k} H(k) e^{j 2 \pi n k / N} \quad n=0, \ldots, N-1
\end{aligned}
$$

D. The sampling theorem :

$$
\begin{aligned}
& x(n)=x\left(n T_{s}\right)=\left.x_{a}(t)\right|_{t=n T_{s}} \quad n=-\infty, \ldots, \infty \\
& X(f)=X\left(F / F_{s}\right)=F_{s} \sum_{k} X_{a}\left[(f-k) F_{s}\right]
\end{aligned}
$$

E. Autocorrelation, energy spectrum and Parsevals theorem :

Given a sequence $x(n)$ with finite energy E_{x} :

Autocorrelation : $\quad r_{x x}(m)=\sum_{n} x(n) x(n+m) \quad m=-\infty, \ldots, \infty$
Energy spectrum : $\quad S_{x x}(z)=X(z) X\left(z^{-1}\right) \Rightarrow S_{x x}(f)=|X(f)|^{2}$
Parsevals theorem: $\quad E_{x}=\sum_{n} x^{2}(n)=\int_{0}^{2 \pi}|X(f)|^{2} d f=\int_{0}^{2 \pi} S_{x x}(f) d f$

F. Autocorrelation, power spectrum and Wiener-Khintchin theorem :

Given a stationary, ergodic sequence $x(n)$ with infinite energy :

Autocorrelation: $\quad \gamma_{x x}(m)=E[x(n) x(n+m)] m=-\infty, \ldots, \infty$

Power spectrum: $\quad \Gamma_{x x}(z)=Z\left[\gamma_{x x}(m)\right] \quad \Rightarrow$

Wiener-Khintchin : $\quad \Gamma_{x x}(f)=\operatorname{DTFT}\left[\gamma_{x x}(m)=\sum_{m} \gamma_{x x}(m) e^{-j 2 \pi m f}\right.$
G. The Yule-Walker and Normal equations where $a_{0}=1$:

Yule-Walker equations: $\quad \sum_{k=0}^{P} a_{k} \gamma_{x x}(m-k)=\sigma_{f}^{2} \delta(m) \quad m=0, \ldots, P$
Normal equations: $\quad \sum_{k=1}^{P} a_{k} \gamma_{x x}(m-k)=-\gamma_{x x}(m) \quad m=1, \ldots, P$

