Contact during examination:
Name: Magne Hallstein Johnsen
Tel.: 93025534

EXAMINATION IN COURSE
 TTT4120 DIGITAL SIGNAL PROCESSING

Date: Thursday, 19 August 2010
Time: 15.00-19.00

Permitted aids: D-No printed or hand-written material allowed. Specified, simple calculator allowed.

INFORMATION

- The examination consists of 4 problems:
- Problem 1 concerns analysis of digital filters.
- Problem 2 concerns finite word length effects in filter structures.
- Problem 3 concerns stocastical processes.
- Problem 4 concerns sampling in frequency domain and DFT.

The weight of each subproblem is given in parenthesis. Total number of points is 56 .

- The solution steps should be evident and all answers should be justified!
- Some important formulae can be found in the appendix.
- The teacher will go around twice, around 16.00 and around 17.45.
- Grades will be announced by September 9th.

Good luck!

Problem $1(3+6+9+4=22$ points $)$

A discrete-time system with transfer function $H(z)$ consists of two subsystems connected in series. The first subsystem is anticausal and is given by its transfer function

$$
H_{1}(z)=\frac{1}{1-3 z^{-1}}
$$

The second subsystem is causal and is given by the following difference equation

$$
2 y(n)-y(n-1)=x(n)-2 x(n-1)
$$

where $x(n)$ and $y(n)$ are the input and the output signal of the subsystem, respectively.
1a) Sketch the region of convergency (ROC) for the transfer functions of the subsystems $H_{1}(z)$ and $H_{2}(z)$, and their serial connection $H(z)$.

1b) Show that the unit pulse responses of the two subsystems are given by

$$
\begin{aligned}
& h_{1}(n)= \begin{cases}-3^{n} & n<0 \\
0 & n \geq 0\end{cases} \\
& h_{2}(n)= \begin{cases}0 & n<0 \\
\frac{1}{2} & n=0 \\
-3\left(\frac{1}{2}\right)^{n+1} & n>0\end{cases}
\end{aligned}
$$

and that the unit pulse response of the entire system is given by

$$
h(n)= \begin{cases}-\frac{3^{n}}{5} & n<0 \\ \frac{3}{5}\left(\frac{1}{2}\right)^{n+1} & n \geq 0\end{cases}
$$

1c) Find out whether the two subsystems and their serial connection are stable?
Are they FIR- or IIR systems?
Do they have a linear phase response?
Determine their type (lowpass, highpass, bandpass, bandstop or all-pass).
1d) Draw the direct form II structure of the subsystem $H_{2}(z)$.
Draw the cascade structure of the entire system $H(z)$.

Page 3 of $4 \quad(+5$ pages enclosure)

Problem $2(2+3+4+4=13$ points)

Figure 1 shows the parallel structure of the filter $H(z)$ from Problem 1.

Figure 1: Implementation of a digital filter
All internal and external signals in the filter structure are represented by binary fixedcomma representation with 4 bits and the dynamic range $[-1,1)$. Rounding is performed after each multiplication. Assume that the rounding error can be considered as uniformly distributed white noise.

2a) Derive an expresion for rounding error power σ_{e}^{2} after a multiplication.
Find also the value of σ_{e}^{2}.
2b) Show that the signal power at the output of an LTI filter with unit sample response $g(n)$ is equal to

$$
\sigma_{q}^{2}=\sigma_{e}^{2} r_{g g}(0)
$$

when white noise $e(n)$ with power σ_{e}^{2} is sent at the input.
2c) Find the total rounding error power at the output of the filter in Figure 1.
2d) Find the necessary scaling factor at the input of the filter in Figure 1 in order to avoid overflow.

Problem 3 ($1+4+5+2=12$ points)

A stocastical process $x(n)$ is generated by sending white Gaussian noise $w(n)$ with varianse $\sigma_{w}^{2}=1$ through a system with transfer function $H(z)=1-2 z^{-1}$.
3a) Which type of prosess is $x(n)$?
3b) Find the autocorrelation function $\gamma_{x x}(l)$ and the power spectral density $\Gamma_{x x}(\omega)$ of the process.

3c) We wish to model the process by an optimal AR(2) model.
Find the model parameters
3d) Find an expression for the power spectral density estimator $\hat{\Gamma}_{x x}(\omega)$ based on the optimal AR(2) model.

Problem $4 \quad(2+4+3=9$ points)

A discrete-time signal $x(n)$ is given by the following figure.

4a) Find the spectrum $X(\omega)$ of the signal $x(n)$.
4b) We take samples of the spectrum $X(\omega)$ in the following way

$$
X(k)=\left.X(\omega)\right|_{\omega=\frac{2 \pi k}{N}} .
$$

Sketch the signal $y(n)$ which has spectrum given by $X(k)$.
How do we have to chose N in order to be able to recover the signal $x(n)$ from the spectral samples $X(k)$?

4c) Explain the principle of the overlap-add method for filtering very long sequences through an FIR filter using DFT.

