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NORWEGIAN UNIVERSITY
OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF TELECOMMUNICATIONS

Contact during examination:
Name: Magne H. Johnsen
Tel.: 73 59 26 78/930 25 534

EXAMINATION IN COURSE TTT4120 DIGITAL SIGNAL
PROCESSING

Date: Friday Desember 3rd, 2010
Time: 09.00 - 13.00

Permitted aids: D–No printed or handwritten material allowed.
Specified, simple calculator allowed..

INFORMATION

• The examination consists of 4 problems.

– Problem 1 concerns analysis of digital filters.
– Problem 2 concerns rational process models.
– Problem 3 concerns fixed point implementation.
– Problem 4 concerns Wiener filters.
– All tasks are weighted equally.
– A list of formulas can be found in the appendix.

• All answers should be justified!

• The teacher will visit you twice, the first time around 10.00 and the second time
around 11.45.
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Problem 1

1a) Given a causal, linear and time invariant (LTI) system with unit pulse response h(n).

Give the region of convergence (ROC) in the z-plane for the system.

Where must the zeros and poles be placed in the z-plane?

Answer : ROC is |z| > |a| and |a| < 1
No restriction on zeros, however poles must be inside unit circle, i.e. maxk |pk| < |a|

1b) A causal LTI filter is described by the following difference equation :

y(n) +
1

6
y(n− 1)− 1

6
y(n− 2) = 2x(n) +

1

6
x(n− 1), n = −∞,∞ (1)

Show that the transfer function H(z) is given by :

H(z) =
2 + 1

6
z−1

(1 + 1
2
z−1)(1− 1

3
z−1)

(2)

Answer :
Y (z) +

1

6
Y (z)z−1 − 1

6
Y (z)z−2 = 2X(z) +

1

6
X(z)z−1 ⇒

Y (z)(1 +
1

6
z−1 − 1

6
z−2) = X(z)(2 +

1

6
z−1) ⇒

H(z) =
Y (z)

X(z)
=

2 + 1
6
z−1

1 + 1
6
z−1 − 1

6
z−2

It is easy to see that the roots of the denominator is respectively z = −1
2
and z = 1

3



1c) Give the ROC area in the z-plane for the filter in task 1b.

Is the filter stable?

Does the filter have minimum phase?

Answer : max[|p1|, |p2|] = 1
2
⇒ ROC : |z| > 1

2

The causality and the ROC together guarantees stability
Minimum phase requires that both poles and zeros are inside the unit circle. We have
a zeros at n1 = − 1

12
. Thus the filter has minimum phase.

1d) Show that the unit impulse response of the filter is given by :

h(n) =

{
(−1

2
)n + (1

3
)n n ≥ 0

0 n < 0
(3)

Answer :
2 + 1

6
z−1

1 + 1
6
z−1 − 1

6
z−2

=
C

1 + 1
2
z−1

+
D

1− 1
3
z−1

⇒

C +D = 2

(−C
3

+
D

2
)z−1 =

1

6
z−1 ⇒ −2C + 3D = 1

which give C = D = 1 !

Thus :

H(z) =
1

1 + 1
2
z−1

+
1

1− 1
3
z−1

⇒

h(n) =

{
(−1

2
)n + (1

3
)n n ≥ 0

0 n < 0
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Problem 2

2a) Sketch the DF2 and the parallel form structures for the filter in task 1.

2b) The autocorrelation sequence of a general filter is defined as :

rhh(m) =
∞∑

n=−∞

h(n)h(n+m) m = −∞,∞ (4)

Show that the filter in task 1 has the following autocorrelation sequence :

rhh(m) =

{
46
21

(−1
2
)m + 111

56
(1

3
)m m ≥ 0

rhh(−m) m < 0
(5)

Answer : we assume m ≥ 0

rhh(m) =
∑
n

[(−1

2
)n + (

1

3
)n][(−1

2
)n+m + (

1

3
)n+m] = A(−1

2
)m +B(

1

3
)m

where

A =
∑
n

[(−1

2
)n + (

1

3
)n](−1

2
)n =

∑
n

(
1

4
)n + (−1

6
)n

B =
∑
n

[(−1

2
)n + (

1

3
)n](

1

3
)n =

∑
n

(−1

6
)n + (

1

9
)n

Utilizing that the sums go from 0→∞ we get :

A =
1

1− 1
4

+
1

1 + 1
6

=
4

3
+

6

7
=

4 ∗ 7 + 3 ∗ 6

3 ∗ 7
=

46

21
≈ 2.2

B =
1

1 + 1
6

+
1

1− 1
9

=
6

7
+

9

8
=

6 ∗ 8 + 7 ∗ 9

7 ∗ 8
=

111

56
≈ 2.0



2c) White noise w(n) with power σ2
w = 1 is input to the filter in task 2a.

Which kind of parametric processes are respectively the internal signals of the DF2
structure and the output signal?

Answer : The difference equation can be rewritten to include the internal sequence
g(n) in the DF2-structure :

g(n) = −1

6
g(n− 1) +

1

6
g(n− 2) + w(n) (6)

y(n) = 2g(n) +
1

6
g(n− 1) (7)

The internal sequence g(n) is thus an AR[2]-process, while the output sequence y(n)
is an ARMA[1,2]-prosess.

2d) Find, by using linear prediction (i.e. the Yule-Walker equations), the process param-
eters for the best AR[1]-model of the filter output signal y(n).

Answer : The Yule-Walker equations for the best AR[1] -model are given by

γyy(1) = −aγyy(0) ⇒ a = −γyy(1)

γyy(0)

γff (0) = γyy(0) + aγyy(1)

where f(n) is the prediction error.

Using equation 5 and σ2
w = 1 we have

γyy(0) = σ2
wrhh(0) = A+B ≈ 4.2

γyy(1) = σ2
wrhh(1) = −A

2
+
B

3
≈ −1.1 + 0.67 = −0.43

Thus we find

a = −−0.43

4.2
≈ 0.10

σ2
ff = 4.2− 0.43 ∗ 0.10 ≈ 4.16
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Problem 3

The discrete filter with structures as in task 2a is to be implemented in fixed point repre-
sentation using B + 1 bits and dynamic range [−1, 1).
Rounding (quantization) is performed after each multiplication and the rounding error can
be regarded as white noise with power σ2

e = 2−2B

12
. All the rounding noise sources lead to a

resulting noise signal z(n) with power σ2
z at the output.

3a) Find the resulting noise power σ2
z at the filter output as a function of σ2

e for the DF2
structure.

Answer : We have four multiplication sources. Two of them are in the feedback
part , (i.e. equation 6) and two in the forward part (i.e. equation 7). The correspond-
ing rounding noise sources in the feedback part must go through the total filter h(n)
to reach the output. The noise sources in the forward part are in fact already at the
output.

Thus σ2
z = 2σ2

erhh(0) + 2σ2
e = (2 ∗ 4.2 + 2)σ2

e = 10.4σ2
e

3b) Also find the resulting noise power σ2
z at the filter output as a function of σ2

e for the
parallel structure.

Answer : The parallel structure consists of two first order filters with unit pulse
responses (see equation 3) given by h1(n) = (−1

2
)nu(n) and h2(n) = (1

3
)nu(n). We

need the energy (zero’th autocorrelation value) for them; i.e.

∞∑
n=0

h2
1(n) =

∞∑
n=0

(−1

2
)2n =

∞∑
n=0

(
1

4
)n =

1

1− 1
4

=
4

3

∞∑
n=0

h2
2(n) =

∞∑
n=0

(
1

3
)2n =

∞∑
n=0

(
1

9
)n =

1

1− 1
9

) =
9

8

Thus the resulting noise power at the output is σ2
z = 4

3
σ2
e + 9

8
σ2
e = 59

24
σ2
e ≈ 2.5σ2

e

Note that the parallel structure is much better than the DF2-structure with respect
to noise power due to rounding!



3c) The filter input x(n) has full dynamic range,i.e xmax = max
n
|x(n)| = 1.

Show that one has to scale the input by 2/7 (downscaling by 7/2) in order to avoid
overflow in the parallel structure.

Answer : We have one internal summary node in each of the first order branches.
In addition we of course have the summary at output y(n). From the input to the
internal nodes we have unit pulse responses corresponding to the two terms in h(n)
in equation 3.

Thus we have :
∞∑
n=0

|h1(n)| =
∞∑
n=0

|(−1

2
)n| =

∞∑
n=0

(
1

2
)n =

1

1− 1
2

= 2

∞∑
n=0

|h2(n)| =
∞∑
n=0

|(1

3
)n| =

∞∑
n=0

(
1

3
)n =

1

1− 1
3

=
3

2

(8)

Further, it is obvious from equation 3 that the sum of magnitudes of the total unit
pulse response h(n) is the sum of the above two values, i.e 2 + 3

2
= 7

2
. Thus it is this

last value 7
2
which we have to use as a scale factor.

3d) Find the reduction in signal to noise ratio SNR = σ2
y/σ

2
z due to scaling at the output

of the parallel structure.

Answer : Scaling down the input from x(n) to x(n)/S leads to that the output also
is scaled by the same amount, i.e y(n)/S. Thus the output power σ2

y is reduced by a
factor S2. The noise power σ2

z is independent of the scaling factor as scaling is done
before internal multiplications (and thus roundings). Thus the SNR is reduced by a
factor S2 = (7

2
)2 = 49

4
= 12.25
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Problem 4

Figure 1: The general Wiener filter

A stationary signal s(n) is contaminated by white additive noise w(n), i.e. the observed
signal is x(n) = s(n) + w(n).
A Wiener filter h(n) will minimize the mean square error σ2

e = E[e2(n)] = E[(d(n)−y(n))2].
The statistical properties of s(n), d(n) and the noise power σ2

w are supposed to be known.

4a) Show that the mean square error can be written as

σ2
e = γdd(0)− 2

∑
k

h(k)γdx(k) +
∑
k

∑
l

h(k)h(l)γxx(l − k) (9)

Answer : When we replace y(n) by h(n) ∗ x(n) =
∑

k h(k)x(n− k) we get :

σ2
e = E[d2(n)]− 2E[d(n)

∑
k

h(k)x(n− k)] + E[(
∑
k

h(k)x(n− k))(
∑
l

h(l)x(n− l))] ⇒

σ2
e = = γdd(0)− 2

∑
k

h(k)E[(d(n)x(n− k)] +
∑
k

∑
l

h(k)h(l)E[x(n− k)x(n− l)] ⇒

σ2
e = = γdd(0)− 2

∑
k

h(k)γdx(k) +
∑
k

∑
l

h(k)h(l)γxx(l − k)

4b) Derive the formula for the FIR Wiener filter of length M

Answer : The sums in the MSE-expression is now finite (0 → M − 1). Thus
we can define two M-dimensional column vectors ~h and ~γdx and a MxM matrix
γ
xx

(k, l) = γxx(k − l).
The MSE can now be written MSE = γdd(0)− 2~hT~γdx + ~hTγ

xx
~h

We now find the optimal filter which gives MMSE by setting the gradient equal to
zero :

∇~hMSE = −2~γdx + 2γ
xx
~h = ~0



Thus we have :
γ
xx
~h = ~γdx ⇒ ~h = γ−1

xx
~γdx (10)

since the matrix is Toeplitz and thus always invertable.

4c) Assume a filter length of M = 3. Describe the differences in the formula when the
FIR filter is to be used for respectively :

• straight noise reduction, i.e. d(n) = s(n)

• smoothing, i.e. d(n) = s(n− 1)

• prediction, i.e. d(n) = s(n+ 1)

Answer : since w(n) is white noise it is uncorrelated both with s(n) and with d(n).
Thus γdx(l) = γds(l) and γxx(l) = γss(l) + σ2

wδ(l)

• straight noise reduction, i.e. d(n) = s(n) → γds(l) = γss(l). The left formula in
equation 9 can be written elementwise as :

γss(l) =
M−1∑
k=0

h(k)γxx(l − k) l = 0, 1, 2

• smoothing, i.e. d(n) = s(n − 1) → γds(l) = γss(l − 1). The left formula in
equation 9 can be written elementwise as :

γss(l − 1) =
M−1∑
k=0

h(k)γxx(l − k) l = 0, 1, 2

• prediction, i.e. d(n) = s(n + 1) → γds(l) = γss(l + 1). The left formula in
equation 9 can be written elementwise as :

γss(l + 1) =
M−1∑
k=0

h(k)γxx(l − k) l = 0, 1, 2

Thus the difference lies in the indexes of γss(l) on the left hand side :

• for d(n) = s(n) we use ~γdx = [γss(0), γss(1), γss(2)]T

• for d(n) = s(n− 1) we use ~γdx = [γss(1), γss(0), γss(1)]T

• for d(n) = s(n+ 1) we use ~γdx = [γss(1), γss(2), γss(3)]T
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Some basic equations and formulaes.

A. Sequences :

∞∑
n=0

αn =
1

1− α
⇐⇒ |α| < 1

N−1∑
n=0

αn =
1− αN

1− α

B. Linear convolution :

y(n) = h(n) ∗ x(n) =
∑
k

h(k)x(n− k) =
∑
k

x(k)h(n− k)

Y (z) = H(z)X(z)⇒ Y (f) = H(f)X(f)⇒ Y (k) = H(k)X(k) k = 0, ..., N − 1

C. Transforms :

H(z) =
∑
n

h(n)z−n ⇒ H(f) =
∑
n

h(n) e−j2πnf

H(k) =
∑
n

h(n) e−j2πnk/N k = 0, ..., N − 1

h(n) =
∑
k

H(k) ej2πnk/N n = 0, ..., N − 1

D. The sampling theorem :

x(n) = x(nTs) = xa(t)|t=nTs n = −∞, ....,∞

X(f) = X(F/Fs) = Fs
∑
k

Xa[(f − k)Fs]
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E. Autocorrelation, energy spectrum and Parsevals theorem :

Given a sequence x(n) with finite energy Ex :

Autocorrelation : rxx(m) =
∑
n

x(n)x(n+m) m = −∞, ....,∞

Energy spectrum : Sxx(z) = X(z)X(z−1)⇒ Sxx(f) = |X(f)|2

Parsevals theorem: Ex =
∑
n

x2(n) =

∫ 2π

0

|X(f)|2df =

∫ 2π

0

Sxx(f)df

F. Multirate formulaes :

Decimation where Tsy = DTsx :

v(mTsy) =
∑
k

h[(mD − k)Tsx] x(kTsx) m = −∞, ....,∞

Upsampling where Tsx = UTsy :

y(lTsy) =
∑
n

h[(l − nU)Tsy] x(nTsx) l = −∞, ....,∞

Interpolation where Tsy = DTsv =
D

U
Tsx :

y(lTsy) =
∑
m

h[(lD −mU)Tsv] x(mTsx) l = −∞, ....,∞

G. Autocorrelation, power spectrum and Wiener-Khintchin theorem :

Given a stationary, ergodic sequence x(n) with infinite energy :

Autocorrelation : γxx(m) = E[x(n)x(n+m)] m = −∞, ....,∞

Power spectrum: Γxx(z) = Z[γxx(m)] ⇒

Wiener-Khintchin : Γxx(f) = DTFT [γxx(m) =
∑
m

γxx(m) e−j2πmf



Appendix page 3 of 3

H. The Yule-Walker and Normal equations where a0 = 1 :

Yule-Walker equations :
P∑
k=0

akγxx(m− k) = σ2
f δ(m) m = 0, ..., P

Normal equations:
P∑
k=1

akγxx(m− k) = −γxx(m) m = 1, ..., P


