Contact during examination:
Name: Magne H. Johnsen
Tel.: 93025534

EXAMINATION IN COURSE TTT4120 DIGITAL SIGNAL PROCESSING

Date: Thursday, August 18th, 2011
Time: 09.00-13.00

Permitted aids: D-No calculators allowed.
No printed or handwritten materials allowed.

INFORMATION

- The examination includes 4 problems, each of which has 4 subsections.
- Problem 1 deals with basic properties of systems/filters.
- Problem 2 deals with filter structures.
- Problem 3 deals with stationary processes and parametric estimation.
- Problem 4 deals with filtering in the frequency domain
- The weight of each subproblem is given in parenthesis at problem start
- The course responsible will visit you twice, the first time around 10.00 o'clock and the second time between 12.00-12.30.

Problem 1 : $(3+5+4+4)$

1a) Which properties have to be fulfilled in order to describe a system by its unit pulse response $h(n)$?

Given that the above properties are fulfilled, define the two properties stability and causality in terms of $h(n)$.

1b) Define the z-transform $H(z)$ in terms of $h(n), n=-\infty, \infty$.
What is meant by the term "region of convergence" (ROC) of the transfer function $H(z)$?

Sketch ROC in the z-plane for respectively a causal and anti-causal system.
What area in the z-plane must be included in ROC if the system is to be stable? State the reason for your answer.

1c) Given the following stable filter $H_{1}(z)$.

$$
\begin{equation*}
H_{1}(z)=\frac{z^{-1}-a}{1-a z^{-1}} \tag{1}
\end{equation*}
$$

Show that the filter is allpass.
For which values of the filter coeffisient a is the filter causal?

1d) Define the autocorrelation sequence $r_{h h}(m), \quad m=-\infty, \infty$ of a general, stable filter $h(n)$.

Explain why the autocorrelation sequence of the allpass filter in subtask 1c has the form

$$
\begin{equation*}
r_{h_{1} h_{1}}(m)=\delta(m), \quad m=-\infty, \infty \tag{2}
\end{equation*}
$$

Problem 2 : $(4+3+6+3)$

Given a stable, causal filter $H(z)$ on the form

$$
\begin{equation*}
H(z)=H_{1}(z) H_{2}(z)=\frac{z^{-1}-\frac{2}{3}}{1-\frac{2}{3} z^{-1}} \frac{1}{1-\frac{1}{2} z^{-1}}=\frac{z^{-1}-\frac{2}{3}}{1-\frac{5}{6} z^{-1}+\frac{1}{3} z^{-2}} \tag{3}
\end{equation*}
$$

i.e. $H_{1}(z)$ is given by the allpass filter in subtask 1c (using $a=\frac{2}{3}$) and $H_{2}(z)$ is given by

$$
\begin{equation*}
H_{2}(z)=\frac{1}{1-\frac{1}{2} z^{-1}} \tag{4}
\end{equation*}
$$

2a) Show that $H(z)$ can be written on the following parallel form

$$
\begin{equation*}
H(z)=H_{3}(z)+H_{4}(z)=\frac{\frac{10}{3}}{1-\frac{2}{3} z^{-1}}+\frac{-4}{1-\frac{1}{2} z^{-1}} \tag{5}
\end{equation*}
$$

2b) Derive the unit impulse response $h(n)$ of the filter $H(z)$

2c) Sketch the following structures for $H(z)$:

- Direct form 2 (DF2)
- Parallel
- Cascade

2d) Explain why the autocorrelation sequences of $H(z)$ and $H_{2}(z)$ are identical.

Problem 3 : $(6+4+4+4)$

Given a causal, stable filter with unit pulse response $g(n), \quad n=0, \infty$. White noise $w(n)$ with power σ_{w}^{2} is input to the filter.
The autocorrelation function $\gamma_{y y}(m), \quad m=-\infty, \infty$, and the power spectrum $\Gamma_{y y}(z)$ of the resulting output signal $y(n)$ are given by

$$
\begin{gather*}
\gamma_{y y}(m)= \begin{cases}\sigma_{w}^{2} \sum_{n=0}^{\infty} g(n) g(n+m) & m \geq 0 \\
\gamma_{y y}(-m) & m<0\end{cases} \tag{6}\\
\Gamma_{y y}(z)=\sigma_{w}^{2} G(z) G\left(z^{-1}\right) \tag{7}
\end{gather*}
$$

3a) Define respectively an ARMA, AR and MA process.
What is the principial difference between a physical process and a process model?

3b) Explain which type of parametric process we will find at the filter output $y(n)$ when white noise with power σ_{w}^{2} is input to respectively :

- $H_{1}(z)$
- $H(z)$
where the filters are defined in task 2 .

3c) Find the autocorrelation sequence of the output $y(n)$ when white noise with power σ_{w}^{2} is input to $H(z)$.

3d) Give the process parameters of the best AR[1] model for each of the two output signals $y(n)$ in subtask 3b.

State your reason for the answers.

Problem 4 : $(3+6+5+3)$

4a) Set up the formulas for a N-point Diskret Fourier Transform (DFT) and its inverse (IDFT) for a sequence $x(n)$ of finite length M

How must N be chosen if one wishes reproduce $x(n)$ from the DFT values?
4b) One wants to filter an infinitely long sequence $x(n), n=-\infty, \infty$ by a FIR-filter $h(n)$ of length L.

Explain how the filtering can be performed in the frequency domain by using the so called "overlap-add" method.

Compare the" overlap-add" method to standard time domain filtrering with respect to the number of multiplications and addition per output sample.

4c) One wants to use DFT to perform a frequency analysis of an infinitely long sequence $x(n), n=-\infty, \infty$. In real one has to base the analysis of a finite segment of length K of the sequence.

Discuss the problems regarding frequency resolution and frequency "leackage" (sidelobes) as a function of the segment length K.

How can one manage to achieve a compromise with respect to the two nonidealities in the frequency domain?

4d) The radix-2 Fast Fourier Transform (FFT) is a fast algorithm for calculating the DFT of a sequence when the length N is a power of 2, i.e. $N=2^{R}$

Explain shortly the principle of the radix-2 FFT algorithm.

Formulas given at exam August 2011 TTT4120 DSP

Course responsible: Magne H. Johnsen

Appendix page 1 of 3

Some basic equations and formulas.

A. Sequences :

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \alpha^{n}=\frac{1}{1-\alpha} \Longleftrightarrow|\alpha|<1 \\
& \sum_{n=0}^{N-1} \alpha^{n}=\frac{1-\alpha^{N}}{1-\alpha}
\end{aligned}
$$

B. Linear convolution :

$$
\begin{aligned}
y(n) & =h(n) * x(n)=\sum_{k} h(k) x(n-k)=\sum_{k} x(k) h(n-k) \\
Y(z) & =H(z) X(z) \Rightarrow Y(f)=H(f) X(f) \Rightarrow \\
Y\left(f_{k}\right) & =H\left(f_{k}\right) X\left(f_{k}\right) \quad f_{k}=k / N \text { for } k=0, \ldots, N-1 \text { where we write } Y(k)=Y\left(f_{k}\right)
\end{aligned}
$$

C. Transforms :

$$
\begin{aligned}
H(z) & =\sum_{n} h(n) z^{-n} \Rightarrow H(f)=\sum_{n} h(n) e^{-j 2 \pi n f} \\
\text { DFT }: H(k) & =\sum_{n=0}^{L-1} h(n) e^{-j 2 \pi n k / N} \quad k=0, \ldots, N-1 \\
\text { IDFT }: h(n) & =\frac{1}{N} \sum_{k=0}^{N-1} H(k) e^{j 2 \pi n k / N} \quad n=0, \ldots, L-1
\end{aligned}
$$

D. The sampling (Nyquist) theorem :

Given an analog signal $x_{a}(t)$ with bandwidth $\pm B$ which is sampled by $F_{s}=1 / T_{s}$:

$$
\begin{align*}
& x(n)=x\left(n T_{s}\right)=\left.x_{a}(t)\right|_{t=n T_{s}} \quad n=-\infty, \ldots, \infty \\
& X(f)=X\left(F / F_{s}\right)=F_{s} \sum_{k} X_{a}\left[(f-k) F_{s}\right] \\
& x_{a}(t) \text { can be recovered from } x(n) \Leftrightarrow F_{s} \geq 2 B \tag{1}
\end{align*}
$$

E. Autocorrelation, energy spectrum and Parsevals theorem :

Given a sequence $h(n)$ with finite energy E_{h} :

$$
\begin{aligned}
\text { Autocorrelation : } \quad r_{h h}(m)=\sum_{n} h(n) h(n+m) \quad m=-\infty, \ldots, \infty \\
\text { Energy spectrum : } \quad S_{h h}(z)=H(z) H\left(z^{-1}\right) \Rightarrow S_{h h}(f)=|H(f)|^{2} \\
\text { Parsevals theorem: } \quad E_{h}=r_{h h}(0)=\sum_{n} h^{2}(n)=\int_{0}^{2 \pi}|H(f)|^{2} d f
\end{aligned}
$$

F. Multirate formulaes :

Decimation where $T_{s y}=D T_{s x}$:

$$
\begin{array}{r}
v\left(m T_{s y}\right)=\sum_{k} h\left[(m D-k) T_{s x}\right] x\left(k T_{s x}\right) \quad m=-\infty, \ldots, \infty \\
\text { Upsampling where } \quad T_{s x}=U T_{s y}: \\
y\left(l T_{s y}\right)=\sum_{n} h\left[(l-n U) T_{s y}\right] x\left(n T_{s x}\right) \quad l=-\infty, \ldots, \infty
\end{array}
$$

Interpolation where $T_{s y}=D T_{s v}=\frac{D}{U} T_{s x}:$
$y\left(l T_{s y}\right)=\sum_{m} h\left[(l D-m U) T_{s v}\right] x\left(m T_{s x}\right) \quad l=-\infty, \ldots ., \infty$

G. Autocorrelation, power spectrum and Wiener-Khintchin theorem :

Given a stationary, ergodic sequence $x(n)$ with infinite energy :

Autocorrelation: $\quad \gamma_{x x}(m)=E[x(n) x(n+m)] m=-\infty, \ldots ., \infty$

Power spectrum: $\quad \Gamma_{x x}(z)=Z\left[\gamma_{x x}(m)\right] \quad \Rightarrow$

Wiener-Khintchin : $\quad \Gamma_{x x}(f)=D T F T\left[\gamma_{x x}(m)\right]=\sum_{m} \gamma_{x x}(m) e^{-j 2 \pi m f}$
H. The Yule-Walker and Normal equations where $a_{0}=1$:

$$
\begin{align*}
& \text { The Yule-Walker equations : } \\
& \sum_{k=0}^{P} a_{k} \gamma_{x x}(m-k)=\sigma_{f}^{2} \delta(m) \quad m=0, \ldots, P \tag{2}
\end{align*}
$$

Or reformulated as the Normal equations :

$$
\begin{aligned}
& \sum_{k=1}^{P} a_{k} \gamma_{x x}(m-k)=-\gamma_{x x}(m) \quad m=1, \ldots, P \\
& \sigma_{f}^{2}=\sum_{k=0}^{P} a_{k} \gamma_{x x}(k) \quad(\text { corresponds to } m=0)
\end{aligned}
$$

