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NORWEGIAN UNIVERSITY
OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF TELECOMMUNICATIONS

Contact during examination:
Name: Magne H. Johnsen
Tel.: 930 25 534

EXAMINATION IN COURSE TTT4120 DIGITAL SIGNAL
PROCESSING

Date: yyyday x August 2011
Time: 09.00 - 13.00

Permitted aids: D–No calculators allowed.
No printed or handwritten materials allowed.

INFORMATION

• The examination includes 4 problems, each of which has 4 subsections.

• Problem 1 deals with basic properties of systems/filters.

• Problem 2 deals with filter structures.

• Problem 3 deals with stationary processes and parametric estimation.

• Problem 4 deals with filtering in the frequency domain

• The weight of each subproblem is given in parenthesis at problem start

• The course responsible will visit you twice, the first time around 10.00 o’clock and
the second time between 12.00 - 12.30.
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Problem 1 (3+5+4+4)

1a) Which properties have to be fulfilled in order to describe a system by its unit pulse
response h(n)? (1 p)
Given that the above properties are fulfilled, define the two properties stability and
causality in terms of h(n). (2 p)

Answers :
h(n)⇔ LTI-system
Stability ⇔

∑
n |h(n)| <∞

Causality ⇔ h(n) = 0 for n < 0

1b) Define the z-transform H(z) in terms of h(n), n = −∞,∞. (1 p)
What is meant by the term "region of convergence" (ROC) of the transfer function
H(z)? (1 p)
Sketch ROC in the z-plane for respectively a causal and anti-causal system. (2 p)
What area in the z-plane must be included in ROC if the system is to be stable? State
the reason for your answer. (1 p)

Answers :
H(z) =

∑
n h(n)z−n

z ∈ ROC ⇔ |H(z)| <∞
Causal+ROC ⇔ |z| > a where 0 < a < 1 )
Anticausal+ROC ⇔ |z| < a where a > 1
Stability ⇔ |z| = 1 ∈ ROC due to that H(f) must exist

1c) Given the following stable filter H1(z).

H1(z) =
z−1 − a
1− az−1

(1)

Show that the filter is allpass. (3 p)
For which values of the filter coeffisient a is the filter causal? (1 p)

Answers :
H1(z)H1(z

−1)|z=ejω = H1(jω)H∗1 (jω) = |H1(jω)|2 = Constant ⇒

H1(z)H1(z
−1) =

z−1 − a
1− az−1

z − a
1− az

=
z−1 − a
1− az−1

z(1− az−1)

z(z−1 − a)
= 1 ⇔ qed

Causality ⇔ |a| < 1



1d) Define the autocorrelation sequence rhh(m), m = −∞,∞ of a general, stable filter
h(n). (1 p)

Explain why the autocorrelation sequence of the allpass filter in subtask 1c has the
form (3 p)

rh1h1(m) = δ(m), m = −∞,∞ (2)

Answer :

rh1h1(m) =
∑
n

h1(n)h1(n+m)

rh1h1(m) = IFT [Rh1h1(jω)] = IFT [|H1(jω)|2] = IFT [1] = δ(m), m = −∞,∞

where IFT means Inverse Fourier Transform
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Problem 2 (4+3+6+3)

Given a stable, causal filter H(z) on the form

H(z) = H1(z)H2(z) =
z−1 − 2

3

1− 2
3
z−1

1

1− 1
2
z−1

=
z−1 − 2

3

1− 5
6
z−1 + 1

3
z−2

(3)

i.e. H1(z) is given by the allpass filter in subtask 1c (using a = 2
3
) and H2(z) is given

by

H2(z) =
1

1− 1
2
z−1

(4)

2a) Show that H(z) can be written on the following parallel form (4 p)

H(z) = H3(z) +H4(z) =
10
3

1− 2
3
z−1

+
−4

1− 1
2
z−1

(5)

Answer :
Putting eq 5 on common denominator gives

10
3

(1− 1
2
z−1)− 4(1− 2

3
z−1)

(1− 1
2
z−1)(1− 2

3
z−1)

=
10
3
− 4− 5

3
z−1 + 8

3
z−1

1− 5
6
z−1 + 1

3
z−2

=
−2

3
+ z−1

1− 5
6
z−1 + 1

3
z−2

⇔ qed

2b) Derive the unit impulse response h(n) of the filter H(z) (3 p)

Answer :
From eq 5 we easily se that the two first order terms directly give

h(n) = h3(n) + h4(n) =
10

3
(
2

3
)n − 4(

1

2
)n n ≥ 0

and of course h(n) = 0 n < 0 due to causality

2c) Sketch the following structures for H(z) :

• Direct form 2 (DF2) (2 p)

• Parallel (2 p)

• Cascade (2 p)



Answer :
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Figure 1: Three different filter structures

2d) Explain why the autocorrelation sequences of H(z) and H2(z) are identical. (3 p)

Answer :

rhh(m) = IFT [Rhh(jω)] = IFT [|H(jω)|2] = IFT [|H1(jω)H2(jω)|2]⇒
rhh(l) = IFT [|H1(jω)|2|H2(jω)|2] = IFT [|H2(jω)|2] = rh2h2(m), m = −∞,∞

which obviously is true as |H1(jω)|2 = 1
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Problem 3 (6+4+4+4)

Given a causal, stable filter with unit pulse response g(n), n = 0,∞. White noise
w(n) with power σ2

w is input to the filter.
The autocorrelation function γyy(m), m = −∞,∞, and the power spectrum Γyy(z) of
the resulting output signal y(n) are given by

γyy(m) =


σ2
w

∞∑
n=0

g(n)g(n+m) = σ2
w rgg(m) m ≥ 0

γyy(−m) m < 0

(6)

Γyy(z) = σ2
w G(z)G(z−1) (7)

3a) Define respectively an ARMA, AR and MA process. (2+1+1 p)

What is the principial difference between a physical process and a process model?
(2 p)

Answer :
All three processes are stationary and ergodic and are derived by inputing white noise
to a filter. For the ARMA process we use a general filter of the formH(z) = B(z)/A(z)
where B(z) and A(z) are polynominals of some order M and N respectively. The AR
process is the special case where we use an allpole filter, i.e. H(z) = 1/A(z) while the
MA case is given by a FIR-filter, i.e. H(z) = B(z)
A physical process is usually nonstationary and has no exact mathematical description.
Thus we often use parametric processes as models (approximations) to the physical
processes. We must then of course also approximate the latter (nonstationarity) to be
short time stationary processes.



3b) Explain which type of parametric process we will find at the filter output y(n) when
white noise with power σ2

w is input to respectively :

• H1(z) (2 p)

• H(z) (2 p)

where the filters are defined in task 2.

Answer :
We refer to equations 6 and 7 for the general descriptions of parametric processes

• H1(z) gives by first look an ARMA[1,1] process (eq. 1). However subtask 1d
showed that rh1h1(m) = δ(m), m = −∞,∞. Thus γyy(m) = σ2

wδ(m), m =
−∞,∞; i.e. the filter output is white noise

• H(z) gives by first look an ARMA[1,2] process (eq. 3). However subtask 2d
showed that we get the same process as when using H2(z). Thus from eq. 4 we
see that the filter output is an AR[1] process.

3c) Find the autocorrelation sequence of the output y(n) when white noise with power σ2
w

is input to H(z). (4 p)

Answer :
We must find the autocorrelation sequence of H(z). However from subtask 2d this is
identical to the autocorrelation sequence of H2(z).

rh2h2(m) =
∑
n

h2(n)h2(n+m) =
∑
n

(
1

2
)n(

1

2
)(n+m)

Assuming m ≥ 0 without losing generality (the autocorrelation is symmetric) we get
:

rh2h2(m) = (
1

2
)m

∞∑
n=0

(
1

4
)n = (

1

2
)m

1

1− 1
4

=
4

3
(
1

2
)m m ≥ 0

Thus we have
γyy(|m|) = σ2

w

4

3
(
1

2
)|m| m = −∞,∞



3d) Give the process parameters of the best AR[1] model for each of the two output signals
y(n) in subtask 3b. (2+2 p)

State your reason for the answers.

Answer :
The model parameters are the noise power σ2

f = σ̂2
w and the filter coefficient a1

• According to subtask 3b H1(z) gives white noise at the output. Thus the best
AR[1] model will have σ2

f = σ2
w and a1 = 0 (degenerate AR process)

• According to subtask 3b H(z) gives an AR[1] process at the output which is
identical to if one used H2(z) instead of H(z). Thus the best AR[1] model will
have a1 = 1/2 and σ2

f = σ2
w.
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Problem 4 (3+6+5+3)

4a) Set up the formulas for a N-point Diskret Fourier Transform (DFT) and its inverse
(IDFT) for a sequence x(n) of finite length M (1+1 p)

How must N be chosen if one wishes reproduce x(n) from the DFT values?
(1 p)

Answer :

X(k) =
M−1∑
n=0

x(n)e−2jπnk/N k = 0, N − 1

x(n) =
1

N

N−1∑
k=0

X(k)e2jπnk/N n = 0,M − 1

Formula for x(n) is only correct if N ≥M (to reproduce x(n) from X(k))

4b) One wants to filter an infinitely long sequence x(n), n = −∞,∞ by a FIR-filter h(n)
of length L.

Explain how the filtering can be performed in the frequency domain by using the
so called "overlap-add" method. (2+1+2 p)

Compare the"overlap-add" method to standard time domain filtrering with respect
to the number of multiplications and addition per output sample (1 p)

Answer :
Points : 2 for splitting up input and summing at output, 1 for choice of segment
lengths, 2 for 4-stage stepwise algorithm, 1 for m+a

One splits the input sequence into consecutive segments xi(n) of lengths M

xi(n) = x(n+ iM) for n = 0, . . . ,M − 1 and i = −∞,∞

This leads to :

y(n) = h(n) ∗ x(n) = h(n) ∗
∑
i

xi(n) =
∑
i

h(n) ∗ xi(n) =
∑
i

yi(n)



where the output segments yi(n) have lengthsM+L−1. Thus two consecutive output
segments overlap by L samples, but are easily summed to achieve y(n).
The calculation of yi(n) can be done in the frequency domain as both the input segment
and the filter have finite lengths. We choose N = 2R ≥ M + L − 1 (in order to use
the FFT and be able to reproduce yi(n)). Further given that H(k) k = 0, N − 1 is
calculated only once, i.e precalculated, the algorithm is as follows : For each segment
i = −∞,∞

• Calculate Xi(k) k = 0, N − 1 from xi(n)

• Calculate Yi(k) = H(k)Xi(k) k = 0, N − 1

• Calculate yi(n) n = 0,M + L− 1 from Yi(k)

• Calculate y(n) from two consecutive segments yi(n)

To produce N output values of y(n) by time domain filtering we need M*Nmults+adds.
Using the frequency domain method and FFT we need N ∗R+N+N ∗R = N ∗(2R+1)
where R = log2(N). Thus for any N where (2log2(N) + 1) < M the overlap-add tech-
nique with FFT should be used.

4c) One wants to use DFT to perform a frequency analysis of an infinitely long sequence
x(n), n = −∞,∞. In real one has to base the analysis of a finite segment of length
K of the sequence.

Discuss the problems regarding frequency resolution and frequency "leackage" (side-
lobes) as a function of the segment length K. (2+2 p)

How can one manage to achieve a compromise with respect to the two nonideali-
ties in the frequency domain? (1 p)

Answer :
Just using a segment of length K is mathematically equivalent to using a rectangular
window of length K. The two nonidealities can be explained by looking at the fre-
quency content of a segment of a harmonic (sinus). Ideally a harmonic is a dirac pulse
but using only a segment (i.e. a window) gives a sinc-like function; i.e. a bandwidth
and sidelobes. The bandwidth is proportional to C ∗ (1/K) (where C is a constant)
and obviously gives us the frequency resolution. The sidelobes give us the frequency
leackage. For a rectangular window the constant C is relatively small, i.e the frequency
resolution is high. However the sidelobes are relatively high and do only converge to-
wards a finite level (-26 dB relatively to the main lobe ) for K →∞.
A tapered window will decrease the frequency resolution (larger value of C) but also
increase the sidelobe attenuation. Different tapering form will give minor differences
in this compromize.



4d) The radix-2 Fast Fourier Transform (FFT) is a fast algorithm for calculating the DFT
of a sequence when the length N is a power of 2, i.e. N = 2R

Explain shortly the principle of the radix-2 FFT algorithm. (3 p)

Answer :
The main principle for the FFT is that one can implement a N = 2R point DFT
by using 2 N/2 point DFTs and N multiplications. And it is easily shown than the
latter leads to fewer mults+adds (m+a). A general N point DFT use N2 m+a. Thus
N2 ≥ 2 ∗ (N/2)2) +N = N2/2 +N for all values N > 2! The difference gets large for
typical values of N , i.e. N = 64, 128, 256, 512, 1024, ....
The radix-2 FFT successively splits the DFTs into smaller such that one ends up with
a structure consisting of (N/2) ∗ log2(N) 2-point DFTs (so called butterflies), which
each requires maximum 2 m+a.


