page 1 of 7 (+ appendix)

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF TELECOMMUNICATIONS

Contact during examination: Name: Magne H. Johnsen Tel.: 73 59 26 78/930 25 534

# EXAMINATION IN COURSE TTT4120 DIGITAL SIGNAL PROCESSING

Date: Monday Desember 10th, 2012 Time: 09.00 - 13.00

Permitted aids: D–No printed or handwritten material allowed. Specified, simple calculator allowed..

#### INFORMATION

- The examination consists of 4 problems.
  - Problem 1 concerns analysis of digital filters.
  - Problem 2 concerns rational process models.
  - Problem 3 concerns fixed point implementation.
  - Problem 4 concerns multirate systems
  - A list of formulas can be found in the appendix.
  - Task weighting is given in parenthesis. Total amount of points is 70.
- All answers should be justified!
- The teacher will visit you twice, the first time around 10.00 and the second time around 11.45.

# Problem 1 (3+3+5+4 = 15 points)

1a) A stable and causal LTI system is given by the following transfer function :

$$H(z) = H_0(z)H_1(z)H_2(z) \quad \text{where}$$

$$H_0(z) = 1 + \frac{5}{3}z^{-1}$$

$$H_1(z) = \frac{1}{(1 + \frac{1}{2}z^{-1})}$$

$$H_2(z) = \frac{1}{(1 - \frac{2}{3}z^{-1})}$$

Show that the difference equation for the filter is given by :

$$y(n) - \frac{1}{6}y(n-1) - \frac{1}{3}y(n-2) = x(n) + \frac{5}{3}x(n-1), \ n = -\infty, \infty$$
(1)

1b) State the reason for your answers on the following:

- What is the region of convergence (ROC) for the filter in subtask 1a?
- Does the filter have linear phase?
- Does the filter have minimum phase?

1c) Show that the unit pulse response of the filter is given by :

$$h(n) = -h_1(n) + 2h_2(n) \tag{2}$$

where

$$h_1(n) = \begin{cases} (-\frac{1}{2})^n & n \ge 0\\ 0 & n < 0 \end{cases}$$
$$h_2(n) = \begin{cases} (\frac{2}{3})^n & n \ge 0\\ 0 & n < 0 \end{cases}$$

1d) Sketch the following two structures of the filter H(z):

- Direct form 2 (DF2)
- Parallel structure where the branch gain  $G_2 = 2$  in equation 2 is placed *before* the feedback.

# $Problem \ 2 \quad (4{+}7{+}3{+}4 = 18 \ points)$

**2a)** The crosscorrelation sequence of two sequences y(n) and x(n), both with finite energy, is given by

$$\begin{aligned} r_{yx}(m) &= \sum_{n=-\infty}^{\infty} y(n+m)x(n) & m \geq 0 \\ r_{yx}(m) &= r_{xy}(-m) & m < 0 \end{aligned}$$

Show that the crosscorrelation sequence of  $h_1(n)$  and  $h_2(n)$  in subtask 1c is given by

$$r_{h_1h_2}(m) = \begin{cases} \frac{3}{4}(-\frac{1}{2})^{|m|} = \frac{3}{4}(-\frac{1}{2})^m & m \ge 0\\ \\ \frac{3}{4}(\frac{2}{3})^{|m|} = \frac{3}{4}(\frac{3}{2})^m & m < 0 \end{cases}$$
(3)

**2b)** Show that the unit pulse responses  $h_1(n), h_2(n)$  and h(n) in task 1 has the following autocorrelation sequences for  $m \ge 0$ :

$$r_{h_1h_1}(m) = \frac{4}{3}(-\frac{1}{2})^m$$
  

$$r_{h_2h_2}(m) = \frac{9}{5}(\frac{2}{3})^m$$
  

$$r_{hh}(m) = -\frac{1}{6}(-\frac{1}{2})^m + \frac{57}{10}(\frac{2}{3})^m$$

In addition the autocorrelation sequences are symmetric around m = 0.

Figure 1 shows a chosen cascade structure for H(z)



Figure 1: Chosen cascade structure

**2c)** White noise w(n) with power  $\sigma_w^2 = 1$  is input to the cascade structure.

Which kind of parametric processes are respectively the output signal and the internal signals in the structure? State the reason for your answer!

**2d)** White noise w(n) with power  $\sigma_w^2 = 1$  is input to the filter H(z).

Find, by using linear prediction (i.e. the Yule-Walker or Normal equations), the filter coefficient  $a_1$  of the best AR[1]-model for the filter output signal y(n).

Show that the prediction error power,  $\sigma_f^2$ , always fulfills :  $\sigma_f^2 \leq \gamma_{yy}(0)$ where  $\sigma_y^2 = \gamma_{yy}(0)$  is the signal power of y(n).

### Problem 3 (4+4+7+4 = 19 points)

The discrete filter in task 1 is to be implemented in fixed point representation using B + 1 bits and dynamic range [-1, 1). Rounding (quantization) is performed after each multiplication and the corresponding rounding error, e(n), can be regarded as white noise with power  $\sigma_e^2 = \frac{2^{-2B}}{12}$ . Together, all the rounding noise sources result in a noise signal z(n) at the output with a total power of  $\sigma_z^2$ .

- **3a)** Find the resulting noise power  $\sigma_z^2$  at the output of the cascade structure as a function of  $\sigma_e^2$ .
- **3b)** Also find the resulting noise power  $\sigma_z^2$  at the output of the parallel structure in subtask 1d.

Note that the minus sign in front of  $h_1(n)$  in equation 2 is implemented as an arithmetic operation (negation) and thus not as a multiplication!!

The filter input x(n) has full dynamic range, i.e  $x_{max} = \max_{n} |x(n)| = 1$ .

**3c)** Show that one has to scale the input by 3/16 (downscaling by 16/3) in order to avoid overflow in the cascade structure used in subtask 3a.

Further show that the parallel structure used in subtask 3b requires a scaling by 1/6 (downscaling by 6).

**3d)** Which of the two scaled structures have the best signal\_to\_noise\_ratio ( $SNR = \sigma_u^2/\sigma_z^2$ ) at the output ?

#### Problem 4 (5+4+4+5 = 18 points)

Figure 2 shows a system for conversion of sampling rate from  $F_1$  to  $F_2$  where I and D are integers.



Figure 2: System for sampling rate conversion

- 4a) Shortly describe the three parts of and give the bandwidth and sampling rate of the internal signals v(l) og w(l).
- **4b)** Derive a time domain expression for the output signal  $x_2(m)$  as a function of the input signal  $x_1(n)$ , the filter h(l) and I og D.
- 4c) Discuss the operation of the system when I > D and vice versa.
- 4d) Given an analogue signal  $x(t) = s(t) + sin(2\pi F_0 t)$  where s(t) has bandwidth  $\pm B = 5000Hz$  and  $F_0 = 4000Hz$ . The signal is sampled by a rate  $F_1 = 10000Hz$ , i.e.  $x_1(n) = x_a(nT_1)$  hvor  $T_1 = 1/F_1$ . Further, we have given a notch filter with a zero of  $f_n = 0.25$ .

How can one use the system in figure 2 together with the notch filter to remove the harmonic component  $(F_0)$  in  $x_1(n)$ ?

# Some basic equations and formulas.

# A. Sequences :

$$\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha} \iff |\alpha| < 1$$
$$\sum_{n=0}^{N-1} \alpha^n = \frac{1-\alpha^N}{1-\alpha}$$

# B. Linear convolution :

$$y(n) = h(n) * x(n) = \sum_{k} h(k)x(n-k) = \sum_{k} x(k)h(n-k)$$
  

$$Y(z) = H(z)X(z) \Rightarrow Y(f) = H(f)X(f) \Rightarrow$$
  

$$Y(f_k) = H(f_k)X(f_k) \quad f_k = k/N \text{ for } k = 0, \dots, N-1 \text{ where we write } Y(k) = Y(f_k)$$

# C. Transforms :

$$H(z) = \sum_{n} h(n)z^{-n} \Rightarrow H(f) = \sum_{n} h(n) \ e^{-j2\pi nf}$$
  
DFT :  $H(k) = \sum_{n=0}^{L-1} h(n) \ e^{-j2\pi nk/N} \quad k = 0, ..., N-1$   
IDFT :  $h(n) = \frac{1}{N} \sum_{k=0}^{N-1} H(k) \ e^{j2\pi nk/N} \quad n = 0, ..., L-1$ 

(4)

#### D. The sampling (Nyquist) theorem :

Given an analog signal  $x_a(t)$  with bandwidth  $\pm B$  which is sampled by  $F_s = 1/T_s$ :

$$x(n) = x(nT_s) = x_a(t)|_{t=nT_s} \quad n = -\infty, \dots, \infty$$
$$X(f) = X(F/F_s) = F_s \sum_k X_a[(f-k)F_s]$$

 $x_a(t)$  can be recovered from  $x(n) \iff F_s \ge 2B$ 

#### E. Autocorrelation, energy spectrum and Parsevals theorem :

Given a sequence h(n) with finite energy  $E_h$ :

Autocorrelation : 
$$r_{hh}(m) = \sum_{n} h(n)h(n+m)$$
  $m = -\infty, ...., \infty$   
Energy spectrum :  $S_{hh}(z) = H(z)H(z^{-1}) \Rightarrow S_{hh}(f) = |H(f)|^2$ 

Parsevals theorem:  $E_h = r_{hh}(0) = \sum_n h^2(n) = \int_0^{2\pi} |H(f)|^2 df$ 

#### F. Multirate formulaes :

Decimation where 
$$T_{sy} = DT_{sx}$$
:  
 $v(mT_{sy}) = \sum_{k} h[(mD - k)T_{sx}] x(kT_{sx}) \quad m = -\infty, ...., \infty$   
Upsampling where  $T_{sy} = UT_{sy}$ :

$$y(lT_{sy}) = \sum_{n} h[(l - nU)T_{sy}] x(nT_{sx}) \quad l = -\infty, ...., \infty$$

Interpolation where  $T_{sy} = DT_{sv} = \frac{D}{U}T_{sx}$ :

$$y(lT_{sy}) = \sum_{m} h[(lD - mU)T_{sv}] x(mT_{sx}) \quad l = -\infty, \dots, \infty$$

### G. Autocorrelation, power spectrum and Wiener-Khintchin theorem :

Given a stationary, ergodic sequence x(n) with infinite energy :

Autocorrelation :  $\gamma_{xx}(m) = E[x(n)x(n+m)] \ m = -\infty, ...., \infty$ 

Power spectrum:  $\Gamma_{xx}(z) = Z[\gamma_{xx}(m)] \Rightarrow$ 

Wiener-Khintchin : 
$$\Gamma_{xx}(f) = DTFT[\gamma_{xx}(m)] = \sum_{m} \gamma_{xx}(m) \ e^{-j2\pi m f}$$

# H. The Yule-Walker and Normal equations where $a_0 = 1$ :

Yule-Walker equations : 
$$\sum_{k=0}^{P} a_k \gamma_{xx}(m-k) = \sigma_f^2 \, \delta(m) \quad m = 0, ..., P$$
Normal equations: 
$$\sum_{k=1}^{P} a_k \gamma_{xx}(m-k) = -\gamma_{xx}(m) \quad m = 1, ..., P$$