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NORWEGIAN UNIVERSITY
OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF TELECOMMUNICATIONS

Contact during examination:
Name: Magne H. Johnsen
Tel.: 73 59 26 78/930 25 534

EXAMINATION IN COURSE TTT4120 DIGITAL SIGNAL
PROCESSING

Date: Monday Desember 10th, 2012
Time: 09.00 - 13.00

Permitted aids: D–No printed or handwritten material allowed.
Specified, simple calculator allowed..

INFORMATION

• The examination consists of 4 problems.

– Problem 1 concerns analysis of digital filters.
– Problem 2 concerns rational process models.
– Problem 3 concerns fixed point implementation.
– Problem 4 concerns multirate systems
– A list of formulas can be found in the appendix.
– Task weighting is given in parenthesis. Total amount of points is 70.

• All answers should be justified!

• The teacher will visit you twice, the first time around 10.00 and the second time
around 11.45.
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Problem 1 (3+3+5+4 = 15 points)

1a) A stable and causal LTI system is given by the following transfer function :

H(z) = H0(z)H1(z)H2(z) where

H0(z) = 1 +
5

3
z−1

H1(z) =
1

(1 + 1
2
z−1)

H2(z) =
1

(1− 2
3
z−1)

Show that the difference equation for the filter is given by :

y(n)− 1

6
y(n− 1)− 1

3
y(n− 2) = x(n) +

5

3
x(n− 1), n = −∞,∞ (1)

1b) State the reason for your answers on the following:

• What is the region of convergence (ROC) for the filter in subtask 1a?

• Does the filter have linear phase?

• Does the filter have minimum phase?
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1c) Show that the unit pulse response of the filter is given by :

h(n) = −h1(n) + 2h2(n) (2)

where

h1(n) =

{
(−1

2
)n n ≥ 0

0 n < 0

h2(n) =

{
(2
3
)n n ≥ 0

0 n < 0

1d) Sketch the following two structures of the filter H(z) :

• Direct form 2 (DF2)

• Parallel structure where the branch gain G2 = 2 in equation 2 is placed before
the feedback.
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Problem 2 (4+7+3+4 = 18 points)

2a) The crosscorrelation sequence of two sequences y(n) and x(n), both with finite energy,
is given by

ryx(m) =
∞∑

n=−∞

y(n+m)x(n) m ≥ 0

ryx(m) = rxy(−m) m < 0

Show that the crosscorrelation sequence of h1(n) and h2(n) in subtask 1c is given by

rh1h2(m) =


3
4
(−1

2
)|m| = 3

4
(−1

2
)m m ≥ 0

3
4
(2
3
)|m| = 3

4
(3
2
)m m < 0

(3)

2b) Show that the unit pulse responses h1(n), h2(n) and h(n) in task 1 has the following
autocorrelation sequences for m ≥ 0:

rh1h1(m) =
4

3
(−1

2
)m

rh2h2(m) =
9

5
(
2

3
)m

rhh(m) = −1

6
(−1

2
)m +

57

10
(
2

3
)m

In addition the autocorrelation sequences are symmetric around m = 0.
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Figure 1 shows a chosen cascade structure for H(z)

Figure 1: Chosen cascade structure

2c) White noise w(n) with power σ2
w = 1 is input to the cascade structure.

Which kind of parametric processes are respectively the output signal and the in-
ternal signals in the structure? State the reason for your answer!

2d) White noise w(n) with power σ2
w = 1 is input to the filter H(z).

Find, by using linear prediction (i.e. the Yule-Walker or Normal equations), the
filter coefficient a1 of the best AR[1]-model for the filter output signal y(n).

Show that the prediction error power, σ2
f , always fulfills : σ2

f ≤ γyy(0)
where σ2

y = γyy(0) is the signal power of y(n).
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Problem 3 (4+4+7+4 = 19 points)

The discrete filter in task 1 is to be implemented in fixed point representation using B+ 1
bits and dynamic range [−1, 1). Rounding (quantization) is performed after each multi-
plication and the corresponding rounding error, e(n), can be regarded as white noise with
power σ2

e = 2−2B

12
. Together, all the rounding noise sources result in a noise signal z(n) at

the output with a total power of σ2
z .

3a) Find the resulting noise power σ2
z at the output of the cascade structure as a function

of σ2
e .

3b) Also find the resulting noise power σ2
z at the output of the parallel structure in subtask

1d.
Note that the minus sign in front of h1(n) in equation 2 is implemented as an arithmetic
operation (negation) and thus not as a multiplication!!

The filter input x(n) has full dynamic range, i.e xmax = max
n
|x(n)| = 1.

3c) Show that one has to scale the input by 3/16 (downscaling by 16/3) in order to avoid
overflow in the cascade structure used in subtask 3a.

Further show that the parallel structure used in subtask 3b requires a scaling by
1/6 (downscaling by 6).

3d) Which of the two scaled structures have the best signal_to_noise_ratio (SNR =
σ2
y/σ

2
z) at the output ?
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Problem 4 (5+4+4+5 = 18 points)

Figure 2 shows a system for conversion of sampling rate from F1 to F2 where I and
D are integers.

x (n)1 DI h(l) 2x (m)v(l) w(l)

Figure 2: System for sampling rate conversion

4a) Shortly describe the three parts of and give the bandwidth and sampling rate of the
internal signals v(l) og w(l).

4b) Derive a time domain expression for the output signal x2(m) as a function of the input
signal x1(n), the filter h(l) and I og D.

4c) Discuss the operation of the system when I > D and vice versa.

4d) Given an analogue signal x(t) = s(t) + sin(2πF0t) where s(t) has bandwidth ±B =
5000Hz and F0 = 4000Hz. The signal is sampled by a rate F1 = 10000Hz, i.e.
x1(n) = xa(nT1) hvor T1 = 1/F1.
Further, we have given a notch filter with a zero of fn = 0.25.

How can one use the system in figure 2 together with the notch filter to remove
the harmonic component (F0) in x1(n)?



Appendix page 1 of 3

Some basic equations and formulas.

A. Sequences :

∞∑
n=0

αn =
1

1− α
⇐⇒ |α| < 1

N−1∑
n=0

αn =
1− αN

1− α

B. Linear convolution :

y(n) = h(n) ∗ x(n) =
∑
k

h(k)x(n− k) =
∑
k

x(k)h(n− k)

Y (z) = H(z)X(z)⇒ Y (f) = H(f)X(f)⇒

Y (fk) = H(fk)X(fk) fk = k/N for k = 0, . . . , N − 1 where we write Y (k) = Y (fk)

C. Transforms :

H(z) =
∑
n

h(n)z−n ⇒ H(f) =
∑
n

h(n) e−j2πnf

DFT : H(k) =
L−1∑
n=0

h(n) e−j2πnk/N k = 0, ..., N − 1

IDFT : h(n) =
1

N

N−1∑
k=0

H(k) ej2πnk/N n = 0, ..., L− 1
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D. The sampling (Nyquist) theorem :

Given an analog signal xa(t) with bandwidth ±B which is sampled by Fs = 1/Ts :

x(n) = x(nTs) = xa(t)|t=nTs n = −∞, ....,∞

X(f) = X(F/Fs) = Fs
∑
k

Xa[(f − k)Fs]

xa(t) can be recovered from x(n) ⇔ Fs ≥ 2B (4)

E. Autocorrelation, energy spectrum and Parsevals theorem :

Given a sequence h(n) with finite energy Eh :

Autocorrelation : rhh(m) =
∑
n

h(n)h(n+m) m = −∞, ....,∞

Energy spectrum : Shh(z) = H(z)H(z−1)⇒ Shh(f) = |H(f)|2

Parsevals theorem: Eh = rhh(0) =
∑
n

h2(n) =

∫ 2π

0

|H(f)|2df

F. Multirate formulaes :

Decimation where Tsy = DTsx :

v(mTsy) =
∑
k

h[(mD − k)Tsx] x(kTsx) m = −∞, ....,∞

Upsampling where Tsx = UTsy :

y(lTsy) =
∑
n

h[(l − nU)Tsy] x(nTsx) l = −∞, ....,∞

Interpolation where Tsy = DTsv =
D

U
Tsx :

y(lTsy) =
∑
m

h[(lD −mU)Tsv] x(mTsx) l = −∞, ....,∞
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G. Autocorrelation, power spectrum and Wiener-Khintchin theorem :

Given a stationary, ergodic sequence x(n) with infinite energy :

Autocorrelation : γxx(m) = E[x(n)x(n+m)] m = −∞, ....,∞

Power spectrum: Γxx(z) = Z[γxx(m)] ⇒

Wiener-Khintchin : Γxx(f) = DTFT [γxx(m)] =
∑
m

γxx(m) e−j2πmf

H. The Yule-Walker and Normal equations where a0 = 1 :

Yule-Walker equations :
P∑
k=0

akγxx(m− k) = σ2
f δ(m) m = 0, ..., P

Normal equations:
P∑
k=1

akγxx(m− k) = −γxx(m) m = 1, ..., P


